


Preface


        






Emilua


        

[image: emilua overview]



Emilua is an execution engine. As a runtime for your Lua programs, it’ll
orchestrate concurrent systems by providing proper primitives you can build
upon.



[image: emilua simple]



Emilua is not a framework. You don’t design the structure of your software by
extending a complex concurrency framework. On the contrary, you start simple
and only makes use of primitives your application needs. Should you only have
the need for simple serial programs, you’ll have access to plenty of IO
abstractions that work across a broad range of platforms.


Fibers

          

[image: emilua simple]



When your software grows and the need to increase the concurrency level a notch
arises, just spawn fibers. The same IO abstractions that work on serial programs
will work on concurrent programs as well. You don’t need to pay an extra huge
cost by completely refactoring your program during this
transition[1].



Sandboxes

          

[image: emilua simple]



Emilua has first-class support for modern sandboxing technologies.



	
Linux.


	
Namespaces.


	
Seccomp.


	
Landlock.








	
FreeBSD.


	
Jails.


	
Capsicum.












Mitigate risks by creating disposable cheap sandboxes to parse untrusted input
data.

Sandboxing support on
Emilua is based around capabilities and elegantly integrates with the same
machinery that is used to implement the actor model.



Compartmentalised application development is, of necessity, distributed
application development, with software components running in different processes
and communicating via message passing.

~ Capsicum: practical capabilities for UNIX Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway




The only resource a sandbox starts with is inbox and its only method:
receive(). In this initial state, a sandbox can’t even ask for new resources
(i.e. it’s a push model). The Lua VM on the host system can then selectively
choose which resources are safe to hand over (e.g. read-only access to a file
and a pipe).

There’s also an optional compatibility layer that interposes key
functions[2] from libc
to translate such calls as requests to a supervisor so it becomes possible to
use existing code within sandboxes w/o the need to rewrite them to work on
tightly sandboxed environments. With some extra work it’s even possible to use
this layer to offer something closer to Capsicum within Linux. A standalone
library that you can LD_PRELOAD into other executables also exists so you can
use this layer even for applications that have nothing to do with Emilua.



Container runtime

          A generic C-powered & Lua-driven container runtime. Many container runtimes out
there focus on specific containerization technologies such as Linux namespaces,
but Emilua acts as a generic container runtime that supports different kernel
technologies[3]:



	
Linux namespaces.


	
FreeBSD jails.






Many container runtimes (e.g. bubblewrap, nsjail) are CLI-driven and give little
room for flexibility. The standard tool to automate CLI usage is BASH. However
BASH cannot be used to restore flexibility here (it can only automate CLI
arguments). BASH scripts are a poor match for the internal container setup
phases, and that’s not usually supported. Even when BASH is supported for the
setup phases (e.g. LXC pre-mount, and net-up scripts), that’s usually very
restricted in scope given how inappropriate BASH is to drive the setup phases of
a container. BASH scripts give you more worries to bring up a container, not
less:



	
Poor synchronization primitives to drive the complex setup required to use new
Linux namespaces. BASH only gives you pipes and files. Files can’t even be
used in all steps of this setup (e.g. mount namespaces and pivot-root). Emilua
will give you a rich pool of IPC primitives not available to BASH scripts
(check the documentation).


	
You must be extra careful to not call any binaries from the container image as
one must always assume these images are compromised (that’s the whole point of
isolating software within a container to begin with), but BASH can’t do
anything on its own and must always rely on external tools (it’s probably a
good idea to rely on static binaries of busybox as well to not accidentally
invoke compromised shared libraries from the container image). Emilua is safer
as it gives you access to a subset of the POSIX API plus a few extensions
(e.g. mkdir, mount) that calls the syscalls directly (i.e. no container
binaries ever involved) within a Lua script to initialize the container
namespaces.






The pragmatic solution is to never involve BASH in the setup of Linux
namespaces. The CLI tool would do all actions declared in the initial arguments
on your behalf, and only return you the final result. The downside is a big loss
in flexibility. If your use case falls outside of the tool’s envisioned cases,
you’re out of options.

Emilua is designed differently. Emilua offers you a fully-featured programming
language and VM — that’s Lua — to script the setup phases inside the
containerized process.

However any general-purpose programming language can escape from BASH’s
shortcomings with respect to containerization challenges. Any container runtime
meant to be used from source code — not a CLI tool — will be flexible enough
to more use cases. The new challenge here is how to avoid leaking resources from
the language’s own runtime to the container. That’s why it’s easy to create a
container runtime using C, but not so much for Java or Python.

What Emilua gives to Lua is a container runtime that surpassed these challenges
and is ready to roll. The API provides two contexts (program and container
initialization), and you can coordinate both to initialize your container
programmatically any way you want. The container initialization context was
paranoiacally implemented to not inherit the parent process’s sensitive
context (e.g. memory other than the executable itself, env vars), to abort on
any C API error by default, and to securely erase the contents of temporary
buffers (e.g. messages received through C.read() within the initialization
script, and any memory allocated by the Lua VM). You won’t find any of these in
other Lua projects.


A note on FreeBSD jails


FreeBSD jails work differently than Linux namespaces, and complex setups are not
really needed. However Emilua can still offer a few goodies here such as
attaching to an existing jail using a clean OS-level process to perform
container-side administrative tasks not specified by binaries found on the
container image.




Later — should you desire — you can still use BASH to orchestrate Emilua
programs after the setup phases are fully encapsulated just inside Emilua
programs. If you have no needs for customizing the container setup phases, then
Emilua doesn’t bring any advantages over other tools — bubblewrap, nsjail, etc — and you’re already well served with the existing market solutions.

The same machinery used for containers is also used to create capsicum
sandboxes. That’s a testament of the runtime’s flexibility. Capsicum pose API
requirements that cannot be met if you can only think and design in terms of the
seccomp model. Emilua is the only container runtime also able to drive full use
of capsicum sandboxes.



Cross-platform

          

	
Windows.


	
Linux.


	
FreeBSD.






Emilua is powered by the battle-tested and scar-accumulating Boost.Asio library
to drive IO and it’ll make use of
native
APIs in a long list of supported platforms. However processor ISA
compatibility will be limited by LuaJIT
availability.



Network IO

          

	
TCP.


	
UDP.


	
TLS.


	
Address/service forward/reverse name resolution.


	
IPv6 support (and mostly transparent).


	
Cancellable operations transparently integrated into the fiber cancellation
API.


	
Several generic algorithms.








IPC

          

	
UNIX domain sockets (stream, datagram, and seqpacket).


	
SCM_RIGHTS fd-passing.


	
Pipes.


	
UNIX signals.


	
Ctty job control (and basic pty support).








Filesystem API

          

	
It easily abstracts path manipulation for different platforms (e.g. POSIX &
Windows).


	
Transparently translates to UTF-8 while retaining the native representation
for the underlying system under the hood.


	
Directory iterators (flat and recursive).


	
APIs to query attributes, manipulate permissions, and the like.


	
Lots of algorithms (e.g. symlink-resolving path canonization, subtrees
copying, etc).








Misc features

          

	
Complete fiber API (sync primitives, cancellation API, clean-up handlers,
fiber local storage, assert-like scheduling constraints, …​).


	
Integrates with Lua builtins (i.e. you can mix up fibers and coroutines,
modules, …​).


	
AWK-inspired scanner to parse textual streams easily.


	
Clocks & timers.


	
File IO (for proactors only[4], so the main thread never blocks).


	
Serial ports.


	
A basic regex module.


	
Portable error code comparison.


	
And much more.










Emilua doesn’t suffer from Bob Nystrom' two colors problem.



Mostly related to ambient authority.



Future releases will also implement virtio-vsock to ease communication with containers managed by QEMU



Right now, Windows' IOCP, and Linux’s io_uring.









Conventions


        
Type annotations

          Lua syntax is extended to document expected types.


Parameter types

          Colon punctuation is used to denote the start of some type annotation after some
variable name.


        function some_function(arg1: number, arg2: string)
    -- ...
end




Return type

          The characters → are used to denote the return type of a function.


        function some_function() -> number
    -- ...
end

function another_function() -> string, number
    -- ...
end




Recognized types

          

	
nil


	
boolean


	
number


	
integer


	
string


	
table


	
function






value may be used when we don’t want to specify the return type for a
function.


        function yet_another_function() -> value
    -- ...
end


unspecified may be used to denote special values for which the actual type
might change among Emilua versions. The user should avoid making any assumptions
about the concrete type of such objects.


        null: unspecified




Composite types

          









	Type
	Syntax
	Example





	Union type

	TYPE_1 | TYPE_2

	file_descriptor | file.stream




	Array

	VALUE_TYPE[]

	string[]




	Dictionary

	{ [KEY_TYPE]: VALUE_TYPE }

	{ [string]: number }












Literals

          Literals may be used when only a subset of values are acceptable for some
parameter.


        function some_function(a: 0|1|2, b: "stdin"|file_descriptor)
    -- ...
end

function another_function(c: string) -> { foo: string, bar: number }
    -- ...
end




Optional parameters

          Brackets may be used to denote optional parameters.


        function a_function(required: string[, optional1: integer, optional2: boolean])
    -- ...
end

function send_file(
    self,
    file: file.random_access,
    offset: integer,
    size_in_bytes: integer,
    n_number_of_bytes_per_send: integer
    [, head: byte_span[, tail: byte_span]]
) -> integer
    -- ...
end

function another_function([foo: number]) -> string[]|byte_span[]
    -- ...
end


For this syntax, it’s not necessary to specify nil as an optional accepted
type.



Varargs

          
        function fun(...: byte_span|string)
    -- ...
end

function fun2(command: string[, ...])
    -- ...
end

function fun3(n: integer) -> ip.address...
    -- ...
end




Overloads

          If a function requires different explanations for each overload, code callouts
are used to specify a overload.


        function foo(file.stream)        ①
function foo(file.random_access) ②




	① Lorem ipsum dolor sit amet, consectetur adipiscing elit

	② sed do eiusmod tempor incididunt ut labore et dolore magna







Similar functions

          Similar functions that take the same arguments may be documented together.


        ip.tcp.get_address_info()
ip.tcp.get_address_v4_info()
ip.tcp.get_address_v6_info()
ip.udp.get_address_info()
ip.udp.get_address_v4_info()
ip.udp.get_address_v6_info()

function(host: string|ip.address, service: string|integer[, flags: integer]) -> table


Brace expansion as in BASH may appear in section titles to denote the functions
that are similar and documented together. However the full name for each
function will still appear at the start of the body for these sections.


this_fiber.{disable,restore}_cancellation()



        this_fiber.disable_cancellation()
this_fiber.restore_cancellation()


Check the fiber cancellation tutorial to see what it does.







Named parameters

          For complex functions that accept too many options a table argument is used to
emulate named parameters. The parameters will then be defined in the text that
follows.



	
parameter_a: string


	
Lorem ipsum






If a parameter is optional, then nil will be OR’ed among the valid types.



	
parameter_b: string|nil


	
Lorem ipsum






Another way to specify an optional parameter is to give it a default value. If a
default value exists, it’ll be used instead of nil. In this case, nil may be
omitted. The default value follows an equals sign.



	
parameter_c: boolean = false


	
Lorem ipsum


	
parameter_d: number = unspecified


	
Lorem ipsum






If a parameter might accept different types, nested definition lists in the text
may be used to define the behavior for each type.



	
parameter_e: string|number


	


	
string


	
Lorem ipsum


	
number


	
dolor sit amet












If nested parameters exist, we’ll omit the table specification for the nested
parameters, and directly document each submember using a dot-notation.



	
parameter_f.foo: string


	
Lorem ipsum


	
parameter_f.bar: number


	
dolor sit amet








self

          It’s safe to assume that any function that takes self as the first argument is
not available as a free function in the module. These functions can only be
accessed through the __index's metamethod on the given object.

If a function is also available as a free function in the module, an explicit
overload will be documented.


        function append(self, ...: byte_span|string|nil) -> byte_span ①
function append(...: byte_span|string|nil) -> byte_span       ②


When only the free function is available in that module, the term self won’t
be used.


        function append(o: byte_span[, ...])
    -- ...
end








ChangeLog


        
0.12 - unreleased

          
Added

          

	
Interfaces for concurrency_hint="unsafe_io".


	
Interfaces for concurrency_hint="unsafe".


	
Some options in spawn_vm()//usr/bin/emilua to have a little bit less of
latency (at the cost of keeping the CPU spinning more).


	
scheduler_task_usec.


	
scheduler_wait_usec.


	
reactor_preallocated_io_objects.














Removed

          

	
spawn_vm() no longer accepts concurrency_hint="safe".


	
/usr/bin/emilua no longer accepts the parameter
--main-context-concurrency-hint=safe.









0.11 - 2025-01-31

          
Added

          

	
New library: libemilua-main.


	
New library: libemilua-libc-service.


	
byte_span.fill().


	
byte_span.with_zeros().


	
byte_span.first() and byte_span.last().


	
byte_span.inplace_lower() and byte_span.inplace_upper().


	
system.get_lowfd()


	
Module libc_service.


	
Parameter subprocess.libc_service in spawn_vm().


	
Parameter subprocess.source_tree_cache in spawn_vm().


	
Parameter subprocess.native_modules_cache in spawn_vm().


	
Parameter subprocess.ld_library_directories in spawn_vm().


	
Parameter subprocess.pd_daemon in spawn_vm().


	
Parameter module in spawn_vm() accepts filesystem.path too now.


	
Value "\0pid" for the parameter "environment" in system.spawn().


	
Function wait() for acceptors.


	
Property file_descriptor.type.


	
Function filesystem.dev_major(), and filesystem.dev_minor().


	
Function filesystem.open().


	
Function file_descriptor.openat().


	
Function file_descriptor.kcmp().


	
Function file_descriptor.is_socket().


	
Function dup_from() in system.in_, system.out, and system.err.


	
Function system.get_ld_library_directories().


	
init.script


	
dev_major() and dev_minor().


	
caph_cache_tzdata() (FreeBSD).


	
dup() and dup2().


	
close() and closefrom().


	
linkat() and AT_SYMLINK_FOLLOW.


	
bind_unix().


	
access(), eaccess(), and access() flags (F_OK, R_OK, W_OK, and
X_OK).








	
More capsicum-related functions.


	
file_descriptor.cap_rights_contains().


	
file_descriptor.cap_rights_remove().


	
file_descriptor.cap_ioctls_get().


	
file_descriptor.cap_fcntls_get().


	
system.caph_limit_stdio() (also in init.script).














Changed

          

	
byte_span.slice() renamed to byte_span.sub().


	
fiber.interrupt() renamed to fiber.cancel(). Originally Emilua adopted the
term “interruption” to adhere to Java and Boost.Thread conventions. Java and
Boost.Thread seem to be inspired by EINTR when defining
InterruptedException and thread_interrupted. The intention isn’t bad and
there’s some logic to it:


	
Send signal to a thread (pthread_sigqueue) to unblock the thread by
interrupting the syscall.


	
EINTR is returned from the syscall. If the underlying language has exception
support, the error will be translated and communicated in the form of
exceptions (so the exception would be EINTR/interrupted).


	
C’s thread cancellation does follow the patterns of an exception mechanism and
it’s natural to translate the thread cancellation protocol into the stack
unwinding flow that happens when raising exceptions.






However EINTR isn’t related to thread-state. EINTR is related to an action
(which may be tried again by the same
thread[5]). EINTR
isn’t a sticky state which will come back to bite you in the next action from
the same thread (Java even got this semantic wrong). Signal handling per se is
already complex enough and full of tricky details to remember. If one is (trying
to) studying thread cancellation and stumbles upon signal handling tutorials
instead (the situation that can happen if thread cancellation insists in using
the same terminology) then the learning process will be needlessly more
difficult. It’s of my opinion that one should just avoid mixing the terms
together here and just adopt an entirely new term (the way POSIX done when
defining thread cancellation…​ not thread interruption).

One can easily define an exception type whose name is thread_canceled. This
exception (no matter the naming chosen) is created, raised and handled…​ by a
different — almost self-contained — subsystem than the one defining and handling
EINTR errors. It’s okay for this subsystem define a new error type/name just
for the thread cancellation process. It’ll end up improving the life of new
programmers learning about thread cancellation (which should be a task much more
common than handling actual EINTR errors[6]).

Anyways, over the years, I never really got rid of translating[7]
“interruption” as a possibility to interrupt the running code at any step (as in
kernel interrupt handlers). So I’d always read code such as
my_fiber:interrupt() by superposition both meanings while making some small
effort to ignore the new “loaded context” from my mind as it had nothing to do
with the problem at hand. fiber:cancel() instead would be really unambiguous
and avoid context overload.



	
If called with a directory argument, /usr/bin/emilua will execute the file
init.lua inside this directory.


	
spawn_vm(): Passing strings as modules ids to mean a filesystem path in
subprocess-based actors no longer work.


	
unix.listen() uses fchmod() instead of umask() so it no longer needs to
be called from the master VM to change the socket permission mode bits.


	
SIGPIPE is set to SIG_IGN at process startup. Many Boost.Asio objects
won’t use MSG_NOSIGNAL on write()
(e.g. asio::posix::stream_descriptor). It’s not realistic to expect every
programmer to add extra code to ignore SIGPIPE in every programming
project. So let’s just go ahead and migrate to the safer default. Programmers
wishing to retain the old behavior can just call
system.signal.default(system.signal.SIGPIPE). init.script and PID1 still
run with SIGPIPE=SIG_DFL, but even the internal forker service will enjoy
the new behavior.








Removed

          

	
Remove JSON module. It’s now available as a separate plugin.









0.10 - 2024-09-01

          
Added

          

	
Function tls.dial().


	
file_descriptor


	
Property non_blocking.








	
New bindings in init.script.


	
fsopen(), FSOPEN_CLOEXEC (Linux).


	
fsmount(), FSMOUNT_CLOEXEC (Linux).


	
move_mount(), MOVE_MOUNT_F_SYMLINKS, MOVE_MOUNT_F_AUTOMOUNTS,
MOVE_MOUNT_F_EMPTY_PATH, MOVE_MOUNT_T_SYMLINKS,
MOVE_MOUNT_T_AUTOMOUNTS, MOVE_MOUNT_T_EMPTY_PATH, MOVE_MOUNT_SET_GROUP,
MOVE_MOUNT_BENEATH (Linux).


	
fsconfig(), FSCONFIG_SET_FLAG, FSCONFIG_SET_STRING,
FSCONFIG_SET_BINARY, FSCONFIG_SET_PATH, FSCONFIG_SET_PATH_EMPTY,
FSCONFIG_SET_FD, FSCONFIG_CMD_CREATE, FSCONFIG_CMD_RECONFIGURE,
FSCONFIG_CMD_CREATE_EXCL (Linux).


	
fspick(), FSPICK_CLOEXEC, FSPICK_SYMLINK_NOFOLLOW,
FSPICK_NO_AUTOMOUNT, FSPICK_EMPTY_PATH (Linux).


	
open_tree(), OPEN_TREE_CLONE, OPEN_TREE_CLOEXEC (Linux).














Changed

          

	
tls.context is now an optional parameter to tls.socket's constructor. If
one is not provided, a default per-VM on-first-use generated one will be used.









0.9 - 2024-06-26

          
Added

          

	
filesystem.clock.time_point.seconds_since_unix_epoch.


	
New bindings in init.script related to mount_setattr() (Linux).








Changed

          

	
is_block_file() renamed to is_block_device().


	
is_character_file() renamed to is_character_device().









0.8 - 2024-05-19

          
Added

          

	
Add functions dial() and listen() from the likes of Golang.


	
New way of embedding builtin modules to a custom binary/launcher.








Changed

          

	
The code is now dual-licensed MIT and BSL-1.0. User picks either of these
options. The motivation is to make it easier to contribute code back to
LuaJIT’s community. Previously it was only easy to contribute code back to the
Boost’s community.


	
Split module unix into submodules.


	
unix.datagram_socket → unix.datagram.socket.


	
unix.stream_socket → unix.stream.socket.


	
unix.stream_acceptor → unix.stream.acceptor.


	
unix.seqpacket_socket → unix.seqpacket.socket.


	
unix.seqpacket_acceptor → unix.seqpacket.acceptor.








	
Removed tables for bit.bor() operations. Flags are now passed as lists of
strings.


	
file.open_flag.


	
ip.address_info_flag.


	
ip.message_flag.


	
tls.context_flag.


	
unix.message_flag.








	
Actor messaging is now more asynchronous than before. Emilua intentionally
used lots of synchronization points internally for actor messaging as it’d be
easier to remove synchronization than to add (if the chosen semantics proved
to be wrong later). Fast-forward to the present and it’s clear now that the
excessive synchronization is not really useful. The excessive synchronization
was not getting in the way for anything, but it wasn’t needed either. The new
semantics (channel.send is fully asynchronous to the target actor) are
lighter to implement as well so it might benefit some
workloads. channel.send still retains some of the previous properties such
as most of the error-checking (e.g. detecting channel-closed for many
scenarios), post semantics in ASIO-lingo (fiber goes to the end of the
execution queue so other fibers have a chance to run), and
interruptibility. We could go further and just don’t reschedule the fiber nor
check for interruptions at all, but I feel more comfortable doing small
gradual changes to see how the changes play out.









0.7 - 2024-04-17

          
Added

          

	
Add seccomp support.


	
Add filesystem.mkdir() to complement filesystem.create_directory().


	
filesystem.mode() accepts new arguments now.


	
Add filesystem.chroot().


	
filesystem.current_working_directory() accepts file_descriptor objects on
UNIX now.


	
Add extra optional parameter to filesystem.mknod().


	
Add filesystem.clock.epoch(). It’s useful to set the last modification date
of every file in some directory for the purposes of a reproducible build or
something. However there are more attributes besides last-write-time you need
to care about if you’re planning to play with reproducible builds (be
warned!).


	
Add filesystem.clock.unix_epoch() and filesystem.clock.now().


	
Add more POSIX bindings to init.script API.


	
Add the flock() family to file.stream and file.random_access.


	
Now it’s possible to configure Landlock mode for the calling process or
system.spawn() subprocesses.


	
Add byte_span methods for primitive types serialization (e.g. reading i32le
from a 4-sized buffer). It also works as an endianness handling
interface. 64-bit integers are omitted from the interface because LuaJIT only
offers a hacky way to handle them.








Changed

          

	
Make subprocess.pid nullable. That’s useful for synchronization when multiple
fibers are observing parts of subprocess state.


	
Allow file_descriptor.close() to be called multiple times in a row.


	
Change filesystem.copy_file() parameters.


	
Change every name in the module filesystem from hard_* to hard*
(e.g. create_hard_link() to create_hardlink()). This C++17 convention is
dumb and Python’s pathlib is the one who got it right.


	
Change default record_separator in stream.scanner to "\n".


	
Always start subprocess-based actors with umask 022.


	
Change system.spawn() parameters from nsenter_* to setns_*.








Fixed

          

	
Close file descriptors from builtin PID1 so EPIPE propagates sooner.


	
Fix races in filesystem.current_working_directory(). Now fchdir() is used.


	
Small documentation issues.


	
Avoid potential IO double-flush on FreeBSD after fork().









0.6 - 2024-01-06

          
Added

          

	
Add FreeBSD’s jails support.


	
Add function format() to format strings. The implementation uses
C++'s libfmt.


	
Add more functions to the module filesystem: exists(), is_block_file(),
is_character_file(), is_directory(), is_fifo(), is_other(),
is_regular_file(), is_socket(), is_symlink(), mode(). It was already
possible to query for these attributes. These functions were added as an extra
convenience.


	
Add yet more functions to the module filesystem: mkfifo(), mknod(),
makedev().


	
New UNIX socket options to retrieve security labels and credentials from the
remote process.


	
file_descriptor implemented for Windows pipes and file.stream.


	
Many improvements to Windows version of system.spawn().








Changed

          

	
Convert decomposition functions from filesystem.path to properties:
root_name, root_directory, root_path, relative_path, parent_path,
filename, stem, extension.


	
Convert some filesystem.path properties to string: root_name,
root_directory, filename, stem, extension.


	
filesystem.path.iterator() will return strings at each iteration now.








Removed

          

	
Remove HTTP & WebSocket classes. They should be offered as separate plugins.









0.5 - 2023-12-03

          
Added

          

	
Add mutex.try_lock().


	
Add module recursive_mutex.


	
Add module future.


	
Add filesystem.chown().


	
Enable IPC-based actors on all UNIX systems.


	
Add Linux Landlock support.


	
Add FreeBSD Capsicum support.








Changed

          

	
spawn_vm() performs the same module path resolution from require() now. That
means it’s possible to use root-imports from spawn_vm().


	
spawn_vm() parameters refactored (API break).









0.4 - 2023-04-03

          
Added

          

	
A new byte_span type akin to Go slices is used for IO ops.


	
Actor channels now can transceive file descriptors.


	
Support for Linux namespaces. Now you can set up sandboxes and run isolated
actors (or just the well-known containers).


	
Modules ip and tls grew a lot. The API for sockets now supports IO ops on
byte_span instances, and plenty of new functions and classes (including UDP)
were added.


	
New modules.


	
time: clocks and timers.


	
pipe.


	
unix: UNIX domain sockets.


	
serial_port: serial ports.


	
system: UNIX signals, CLI args, env vars, process credentials, and much
more.


	
file: file IO. Only available on systems with proactors (e.g. Windows with
IOCP, and Linux with io_uring). BSD can still be supported later (with kqueue
+ POSIX AIO).


	
filesystem: portable path-manipulation, and plenty of filesystem operations
& algorithms.


	
stream: AWK-inspired scanner and common stream algorithms.


	
regex: Basic regex functions. The interface has been inspired by C++,
Python and AWK.


	
generic_error: portable error comparison for filesystem, sockets, and much
more.


	
asio_error: errors thrown by the asio layer.


	
websocket.








	
Lua programs can define their own error categories now.


	
Several new OS-specific APIs (e.g. Linux capabilities, and Windows'
TransmitFile()).


	
Add http.request.upgrade_desired().


	
http.socket can work on top of UNIX domain stream sockets now.


	
Documentation can now be installed as manpages.


	
Support for io_uring.








Changed

          

	
Upgrade to C++20. The motivating feature for the upgrade was
std::atomic<std::weak_ptr<T>>. However, other C++20 features are being
used as well.


	
Moved steady_timer to the new module time.


	
tls.ctx renamed to tls.context.


	
inbox.recv() renamed to inbox.receive()


	
Module cond renamed to condition_variable.


	
error_code.cat renamed to error_code.category.


	
spawn_ctx_threads() renamed to spawn_context_threads().


	
inherit_ctx renamed to inherit_context in spawn_vm().


	
Now Emilua is less liberal on accepted values for env var EMILUA_COLORS.


	
Finer-grained cancellation of IO ops.


	
Locales are set at application startup.


	
The build system now makes use of Meson’s wrap system.








Removed

          

	
Removed println().


	
Removed sleep_for. Its functionality has been replaced by the module time.


	
Removed ip.tcp.resolver. Its functionality has been replaced by
ip.get_address_info().








Fixed

          

	
Bug fixes.









0.3 - 2021-03-04

          
Added

          

	
HTTP request and response objects now use read-write locks and there is some
limited sharing that you can do with them without stumbling upon EBUSY errors.


	
Improvements to the module system (that’s the main feature for this
release). You should be able to use guix as the package manager for your
emilua projects.


	
EMILUA_PATH environment variable.


	
Native plugins API (it can be disabled at build configure time).


	
Add logging module.


	
Add manpage.


	
--version CLI arg.


	
Build configure options to disable threading.








Changed

          

	
Use fmtlib from host system.









0.2 - 2021-01-31

          
Added

          

	
Add HTTP query function: http.request.continue_required().








Changed

          

	
Refactor module system. The new module system is incompatible with the
previous one. Please refer to the documentation.


	
Numeric values for error codes changed.








Removed

          

	
Remove failed_to_load_module error code. Now you should see "iostream
error" or other more informative error reasons upon a failed module load.








Fixed

          

	
Fix build when compiler is GCC.











TEMP_FAILURE_RETRY



As another example for EINTR plumbing with details difficult to grasp for the newcomer…​ how does one handle EINTR for close()? Should we really be reusing vocabulary that might direct the newcomer to such tutorials that have nothing to do with thread-cancellation and already established some norms for the the use of the term “interrupted”? Why would be wrong to just adopt the alternative proposed POSIX terminology instead?



As in…​ internally…​ in my mind…​ automatically/semi-unconsciously.









Tutorials


        
















Getting started


        Perhaps Lua’s best-known feature is its portability. Its reference
implementation from PUC-Rio is written in plain ANSI C and it’s very easy to
embed in any larger program.

However limiting Lua to ANSI C has a high toll attached. Any useful program
interacts with the external world (i.e. it must perform IO operations), and
approaching portability by limiting oneself to ANSI C has consequences:



	
Many useful IO operations don’t belong to ANSI C’s scope (you can’t even
perform socket operations).


	
Not every operation will use the most efficient approach for the underlying
system.


	
There aren’t even APIs to create threads, nor to multiplex IO requests in the
same thread, so at most you can handle half-duplex protocols.






Another approach to portability — the one chosen by Emilua — is to have a
different implementation for every OS. So your Lua program can make use of
portable interfaces that require different underlying implementations. That also
seems to be the approach taken by luapower[8].

Furthermore, if efficient operations exist to deal with patterns specific to
some OSes, they are available when your Lua program runs in them (as long as
they don’t conflict with the proactor model[9]). For instance, you can make use of TransmitFile() when your
program runs in Windows. It’s expected that more of these interfaces will appear
in future Emilua releases.


Hello World

          
        print("Hello World")


Or, using the streams API:


        local system = require "system"
local stream = require "stream"

stream.write_all(system.out, "Hello World\n")


Emilua doesn’t expose native handles (e.g. file descriptors, or Windows HANDLE
objects) for the underlying system directly. Instead they’re wrapped into IO
objects that expose a portable & safe interface (they’d also be type-safe in
statically typed languages). You can’t accept connections on a pipe handle, and
Emilua doesn’t worry about such impossible use cases.



Many of the interfaces used in Emilua are inspired by Douglas C. Schmidt’s
work in Pattern-Oriented Software Architecture.




The standard stream handles — stdin, stdout, and stderr — are available
in the module "system". They model the interface for streams. The module
"stream" contains useful functions to manipulate these objects.



Many other types modeling streams exist in Emilua such as files, pipes,
serial ports, TCP and TLS connections.




A stream can be further broken down into read streams and write streams.
system.out models a write stream. Write streams contain the following method:



	
write_some(self, buffer: byte_span) → integer


	
Writes buffer into the stream and returns the number of bytes written.
On errors, an exception containing the error code generated by the OS is raised.







Writes are not atomic (unless guaranteed by the underlying system under certain
scenarios). To portably write the whole buffer into the stream, we must keep
calling write_some() until the buffer is fully drained (Emilua won’t
automatically and inappropriately buffer data behind your back). That’s what
stream.write_all() does. Another boilerplate taken care of by
stream.write_all() is creating a network buffer out of a string object.



Async IO

          In truly async IO APIs, the network buffer must stay alive until the operation
completes. So — for network buffers — Emilua uses a type independent of the
Lua VM lifetime. If you call system.exit() to kill the calling VM, the network
buffers participating in outstanding IO operations will stay alive until the
respective operations finish (but killing the VM will also send a signal to
cancel such associated outstanding IO operations).



byte_span is modeled after Golang slices, but many more algorithms
(mostly string-related) are available as well.




The initiating function (such as read_some()) signals to the operating system
that it should start an asynchronous operation, but the operation itself hardly
involves the CPU at all. So if there’s nothing else to execute, the CPU would
idle until notified of external events. Keeping the CPU spinning will not make
the IO happen faster. Making more CPU cores spin won’t make the IO operation run
faster. Once the request is sent to the kernel (and then further forwarded to
the controller), the CPU is free to perform other tasks.

That’s what async IO means. The IO operation happens asynchronously to the
program execution. However signaling that the IO operation has completed (the IO
completion event) doesn’t need to be asynchronous.





Delay not, Caesar.  Read it instantly.

~ Shakespeare Julius Caesar, 3, I






Here is a letter, read it at your leisure.

~ Shakespeare Merchant of Venice, 5, I




~ Quoted in "VMS Internals and Data Structures", V4.4, when referring to I/O system services




There is a lot more to this topic. However, for the Lua programmer, the topic
ends here (pretty boring, huh?).



Concurrent IO

          The initiating function blocks the current fiber until the operation
finishes. However, as we saw earlier, this would be the perfect moment to
perform other tasks and schedule more IO operations.

A trend we see in modern times is that of lazy frameworks to solve the async IO
problem first and foremost. Only then when their authors stumble on the problem
of concurrent programming[10] they’re forced to do
something about it, and they keep ignoring it by offering lame ad-hoc tooling
around it[11]. Emilua is different. The first versions of Emilua were all focused on
offering a solid execution engine for concurrent programming. And once this
foundation was solid, a new version was released with plenty of IO operations
integrated.

Emilua — as the execution engine — will schedule fibers and actors in a
cooperative multitasking fashion. Once the initiating function forwards the
request to the kernel, Emilua will choose the next ready task to run and
schedule it (be it a fiber, be it an actor).



Emilua is focused on scalability and throughput. A solution for
latency-oriented problems could be offered as well, but as of this writing it
doesn’t exist.




So, if you want to perform background tasks while the IO operation is in
progress, just schedule a new task before you call the initiating function.


Spawning new fibers

          Just call spawn() passing the start function and a new fiber will be scheduled
for near execution.


        local system = require "system"
local stream = require "stream"
local sleep = require "time".sleep

spawn(function()
    -- WARNING: Please, do not ever use timers to synchronize
    -- tasks in your programs. This is just an example.
    sleep(1)

    stream.write_all(system.out, " World\n")
end):detach()

stream.write_all(system.out, "Hello")




Spawning new actors

          Just call spawn_vm() passing the start module and a new Lua VM will be created
and scheduled for near execution.


        local system = require "system"
local stream = require "stream"

if _CONTEXT == 'main' then
    spawn_vm('.')
    stream.write_all(system.out, "Hello")
else assert(_CONTEXT == 'worker')
    require "time".sleep(1)
    stream.write_all(system.out, " World\n")
end




Choosing between fibers and actors

          Fibers share memory, and failing to handle errors in certain well-defined
scenarios will bring down the whole Lua VM. If you need a slightly higher degree
of protection against dirty code, spawn actors.

Lua VMs represent actors in Emilua. Different actors share no memory. That has
an associated cost, and it’s also inconvenient for certain common patterns. If
you aren’t certain which model to choose, go with fibers.

If you saturated your single-core performance already, an easy way to extract
more performance of the underlying system is most likely to spawn new
threads. Lua isn’t a thread-safe language, so you need to spawn more Lua VMs
(i.e. actors), and a few threads as well.

You can also mix both approaches.




Hello sleepsort

          One really useful algorithm to quickly showcase a good deal of design for
execution engines is sleepsort. In a nutshell, sleepsort sorts numbers by
waiting N units of time before printing N, and this process is executed
concurrently for each item in the list.


        local sleep = require('time').sleep

local numbers = {8, 42, 38, 111, 2, 39, 1}

for _, n in pairs(numbers) do
    spawn(function()
        sleep(n / 100)
        print(n)
    end)
end


The above program will print the numbers in sorted order.



Cancellable operations

          IO operations might never complete, so serious execution engines will expose
some way to cancel them. There’s a huge tutorial just on this topic and you’re
encouraged to read it:
emilua-cancellation(7).

Adding a timeout argument for each operation is a lame way to solve this
problem[12], and Emilua wants no part in this
trend. However, if that’s how you really want to solve your problems, here’s one
way to do it:


        local sleep = require('time').sleep

function op_with_timeout(op, timeout)
    local f_op = spawn(op)
    local f_timer = spawn(function()
        sleep(timeout)
        f_op:cancel()
    end)

    local ret = {f_op:join()}
    f_timer:cancel()
    return unpack(ret)
end

-- USAGE EXAMPLE

local ip = require 'ip'

local acceptor = ip.tcp.acceptor.new()
acceptor:open('v4')
acceptor:set_option('reuse_address', true)
if not pcall(function() acceptor:bind(ip.address.loopback_v4(), 8080) end) then
    acceptor:bind(ip.address.loopback_v4(), 0)
end
print('Listening on ' .. ip.tostring(acceptor.local_address, acceptor.local_port))
acceptor:listen()

local sock = op_with_timeout(function() return acceptor:accept() end, 5000)
print(getmetatable(sock))




Final notes

          That’s the gist of using Emilua. The interfaces mimic their counterpart in the
non-async world, and it’s usually obvious what the program is doing even when
there’s a huge theoretical background behind it all.

We try to follow the principle of no-surprises. One operation in Emilua is
roughly equivalent to one syscall in the underlying OS, and we just pass the
original error (if any) unmodified for the caller to handle instead of trying to
do anything funny on the user’s back.

If you don’t need multitasking support, the program you write in Emilua won’t
look much different from a program written for an abstraction layer that just
exposes small shims over the real syscalls. If you can write programs for
blocking APIs, you can write programs for Emilua.

When you do need multitasking, Emilua is perhaps the most flexible solution for
Lua programs. However, why is that so — how to make good use of all the tools,
and what it’s really being offered beyond the trivial — will be a topic of
other tutorials.

Many of the topics barely scratched above could be further expanded into
tutorials of their own. Browse the documentation pages to see what topics catch
your attention.





https://luapower.com/



The exception to this rule are filesystem operations. Filesystem operations are available in Emilua regardless of whether the underlying system offers them as part of a proactor.



Managing state, event notifications, wasteful pooling, forward progress, fairness, …​



Exceptions to this trend include Java’s LOOM, Erlang, and Golang.



Latency-oriented frameworks are not part of this criticism. They have a good excuse for it.









Working with streams


        Streams are one of the fundamental concepts one has to deal with when working
on IO. Streams represent channels where data flows as slices of bytes respecting
certain properties (e.g. ordering).

Emilua exposes two concepts to work with streams. Write streams are objects that
implement the method write_some():



	
write_some(self, buffer: byte_span) → integer


	
Writes buffer into the
stream and returns the number of bytes written.






Similarly, read streams are objects that implement the method read_some():



	
read_some(self, buffer: byte_span) → integer


	
Reads into buffer and
returns the number of bytes read.






Exceptions are used to communicate errors.

When the type of the stream is not informed (i.e. read or write), it’s safe to
assume the stream object implements both interfaces. Pipes are unidirectional,
and separate classes exist to deal with each. On the other hand, TCP sockets are
bidirectional and data can flow from any direction. Furthermore, many sockets
allow one to shutdown one communication end so they can work unidirectionally as
well.


Short reads and short writes

          Streams represent streams of bytes, with no implied message boundaries.

Each operation on a stream roughly maps to a single syscall[13], and it may transfer fewer bytes than requested. This is referred to as
a short read or short write.

Reasons why short writes occur include out of buffer space in kernels that don’t
expose proactors. The rationale for short reads is more obvious, and it should
stay as an exercise for the reader (no pun intended).

To recover from short reads and short writes, one just has to try the operation
again adjusting the buffer offsets. For instance, to fully drain the buffer for
a write operation:


        while #buffer > 0 do
    local nwritten = stream:write_some(buffer)
    buffer = buffer:sub(1 + nwritten)
end


The module stream already contains many of such algorithms. You may come up
with your own algorithms as well taking the business rules of your application
into consideration (e.g. combining newly arrived data into the next calls to
write_some()). Alternatively, if you don’t need portable code, and the
underlying system offers extra guarantees, you may do away with some of this
complexity.



Layering

          Streams of bytes by themselves are hardly useful for application
developers. Many patterns exist to have structured data on top:



	
Fixed-length records (binary protocols).


	
Fixed-length header + variably-sized data payload (binary protocols).


	
Records delimited by certain character sequences (textual protocols).


	
Combinations of the above (e.g. HTTP starts with a textual protocol of
CRLF-delimited fields, and it might change to a fixed-length payload to read
the body, and maybe change yet again to a textual protocol to extract the
resulting JSON data).






Given a single protocol might require multiple strategies, it’s important to
offer algorithms that don’t monopolize the stream object to themselves. The
algorithms should be composable. The algorithms found in the module stream
follow this guideline.

This composition of algorithms naturally build layers:



	
Raw IO. The IO interfaces exposed by the OS. There’s no interface for peeking
data or putting data back. Once the data is extracted out of the stream, it’s
your responsibility to save it until needed.


	
Buffered IO. Just as short reads might happen, so can "long" reads. Upon
dispatching the message for processing that includes data until the delimiter,
you must be careful to not discard extra data that represents the start of the
next message. Buffered IO is built on top of raw IO by managing an user-space
buffer (and an associated index for the current message) alongside with the IO
object.


	
Formatted IO. Built on top of buffered IO integrating a parser (for input),
and/or a generator (for output). Now the user is no longer interacting with
slices of bytes, but properly structured data and messages.






It’s always easier to work with high-level formatted IO than low-level
raw IO. However, when an implementation for the target protocol doesn’t exist,
you may have no other choice.

Emilua offers stream.scanner(3em) for generic
formatted textual input.



Composed operations

          As it may already be clear by now, many algorithms are compositions of raw IO
operations. Unless the IO object synchronizes access on its own (and explicitly
says so), you should be careful to not initiate extra IO operations that might
affect the already in-flight operations for that object.

Concurrent writers operating on the same IO object is a common gotcha that
causes corrupt streams during high-load scenarios (if "atomic" writes are not
guaranteed by the underlying system). Suppose you’re generating line-delimited
JSON objects on a UNIX stream socket. You’re collecting info from various system
services (e.g. "/run/acpid.socket"), and for each event, you generate a new
JSON object.



[image: muxing services info]



In other words, you’re multiplexing information from assorted sources. The same
can happen on the web when you’re orchestrating microservices and dumping
information on a WebSocket channel. Now, back to our example, if a short write
happens, you might end up in the following state:



[image: corrupt stream on composed short reads]



In other words, one of the messages didn’t fit in the kernel buffer, then
stream.write_all() retried the operation to drain the buffer. However there
was already another in-flight write operation, and it was scheduled first than
buf1:sub(N1)). The end result will be a stream where the second message is
inserted in the middle of another message (a corrupt stream):



[image: corrupt stream on composed short reads result]





This problem is not exclusive to async IO frameworks. The same behavior
can be observed if you code for blocking APIs making use of threads to achieve
concurrency.




To solve this problem, you should create a mutex to protect the write end of the
stream:


        scope(function()
    stream_write_mtx:lock()
    scope_cleanup_push(function() stream_write_mtx:unlock() end)
    stream.write_all(stream, event_json)
end)


Other network frameworks for scripting languages try to solve the problem
transparently by making use of an unbounded write buffer under the hood. However
that’s solving the issue in the wrong layer. If a write buffer is always used,
the network framework can no longer appropriately communicate which user-issued
write operation caused an error. The way such frameworks implement this solution
is actually way worse as they face back-pressure issues as well, and have to
band-aid patch the API all over.

Emilua will not inappropriately entangle all IO layers — raw IO, buffered IO,
formatted IO — together. When you do want to make use of shared write buffers,
you can write your own socket + the buffer (and mutex) to abstract this pattern
in a way that won’t cause problems to your application.

Do notice that such problems don’t exist when composed operations use operations
that don’t overlap each other. For instance, you can use stream.read_all() and
stream.write_all() on the same object with no synchronization because such use
won’t perform concurrent write_some() calls nor concurrent read_some()
calls.



Why EOF is an error

          Same rationale as
Boost.Asio[14]:



	
The end of a stream can cause
stream.read_all(3em),
stream.read_at_least(3em), and other
composed operations to violate their contract (e.g. a read of N bytes may
finish early due to EOF).


	
An EOF error may be used to distinguish the end of a stream from a successful
read of size 0.








See also

          

	
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/


	
https://sourceforge.net/p/asio/mailman/asio-users/thread/5357B16C.6070508%40mail1.stofanet.dk/










That applies to IO objects that expose system resources (e.g. TCP sockets). Higher-level abstractions built in user-space (e.g. TLS sockets) don’t apply.



https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/core/streams.html









Filesystem API


        Emilua offers its own cross-platform filesystem API. The hard thing about a
cross-platform filesystem API is basically Windows. As Ryan Gordon (from the SDL
fame) succinctly put it:



Windows. Windows is the problem.



	
Windows wants you to mess with UTF-16 strings for Unicode filepaths,
everything else wants UTF-8.


	
Windows wants you to use Win32 APIs, everything else uses POSIX.


	
Windows wants you to use FILETIME (100-nanosecond increments since 1601),
everything else uses POSIX (time_t, Unix epoch).


	
Windows wants you to use '\\', everything else uses '/'.


	
Windows has drive letters, everything else has mount points.


	
Windows sorta has symlinks in modern times, many other things always do. But
some things don’t at all!






~ https://github.com/libsdl-org/SDL/issues/8129#issue-1855143179




On top of what Ryan said, I’d add the following points:



	
Windows wants you to mess with GetLastError(), everything else wants
errno.


	
Windows is case-insensitive, everything else is case-sensitive.






Except for case sensitivity, Emilua absorbs all of these problems on your behalf
with an API that abstracts such differences away. On top of that, it’ll use
Microsoft’s own implementation for such translation
layers[15] when it’s running on Windows (meaning: if you decide to not use
“Emilua” abstractions because you don’t trust our knowledge of the Windows API
you’re just avoiding Microsoft’s own code which you can’t really do).

Of course a few non-Windows extensions are also offered. If you’re not (only)
targeting Windows, the common UNIX concepts are a must to have, and they’re here
(otherwise you wouldn’t be able to use Emilua to build containers which is
something we also support).


The object filesystem.path

          filesystem.path is the central piece in the architecture for our design. As
the name implies, it represents a path. On the Lua side, you just deal with
UTF-8 encoding. Internally, this class will keep the representation in the
native format and translate to UTF-8 as needed to interact with Lua code.


        local fs = require "filesystem"
local my_path1 = fs.path.new("/home/user")
local my_path2 = fs.path.from_generic("Downloads/music")


There are two constructors. One takes the path in the native format. The other
uses a generic format. The generic format always use "/" as the directory
separator. The native format receives no special handling here as for what "/"
might mean and just relies on the native directory separator of the underlying
platform (but it still handles conversions from UTF-8 to the native encoding).

When you’re composing paths, you can use the overloaded operators as they’ll
automatically use the native directory separator for the underlying platform:


        function foobar(path)
    return path / "Downloads" / "myfile" .. ".txt"
end


You can also query their dynamic properties to perform path decomposition:


        function foobar(path)
    return path.parent_path, path.filename
end


Or decompose them through iteration:


        function foobar(path)
    for component in path:iterator() do
        print(component)
    end
end


Paths are immutable. Operations that modify a path always return a new path
while the original is left untouched.

No place in the Emilua API receives a string to handle file paths. You’ll need
to use path objects explicitly even in UNIX socket operations. This design helps
to disambiguate cases where multiple types are accepted but mean different
things (e.g. program in system.spawn()). It also helps to centralize
platform differences related to path representation in a single class (e.g. just
grep through your codebase and you can easily refactor stuff around or look for
wrong assumptions).

This class only handles the path itself. It’s just an in-memory
representation. When you use its member functions (e.g. lexically_normal()),
you’re NOT doing any operation on the filesystem itself. There’s no danger in
committing filesystem operations by just playing with the path object alone
(that’s also why some functions are non-members as a hint to indicate that they
might touch the actual filesystem to complete their task).



Filesystem operations

          The module filesystem presents plenty of useful functions such as:



	
Directory iteration (flat and recursive).


	
Path normalization algorithms (e.g. resolve symlinks, make relative to some
base, etc).


	
Create a directory and any missing parent.


	
Copy subtrees.


	
Manipulate links.






Any of these operations might fail and the platform will report the associated
error. Emilua will just propagate the original error to your program. If you
want to handle the error portably you may call the method togeneric() to
convert the platform-specific error code into the POSIX errno-like object:


        function handle_error(e)
    if e:togeneric() == generic_error.EEXIST then
        -- EEXIST on POSIX or
        -- ERROR_ALREADY_EXISTS on Windows
        return handle_eexist(e)
    else
        error(e)
    end
end


It’s important to preserve the original error when you’re actually trying to
understand why an operation fail on some platform. That’s why Emilua doesn’t try
to hide it away under generic_error automatically, and you must always opt-in
for the translation here. Try to keep the original error value in logs and only
convert it to generic_error when you’re actually handling the error matching
it against a set of conditions your program is able to handle.

On Windows, the translation to POSIX error codes is done by code written by
Microsoft. We do not hardcode any mapping ourselves. That’s the closest as it
gets to any form of official support from the native platform. You can’t do any
better than that, and you should feel safe to use the Emilua API directly
instead of trying to bypass it.



Async IO and threading

          Unfortunately, async filesystem operations never really gained traction in any
mainstream operating system (and the scenario is unlikely to change). Read/write
on files may make use async IO, but moving files, iterating on directories, etc
all rely on blocking operations. It’d be terribly inefficient to create a thread
for each of these operations. Using thread pools instead of plain threads would
also have huge drawbacks. Therefore, Emilua opts to just block on all of these
operations. If you need to perform operations from the module filesystem w/o
blocking the current thread, use spawn_vm{inherit_context=false} to spawn an
actor in a new thread from which you can unapologetically perform blocking
operations.





Microsoft’s implementation of the standard library for C++17.









Alternative projects


        


Table 1. General concurrency models










	
	Fibers
	Threads
	Local actors
	Distributed actors
	Sandboxed actors[16]





	cqueues[17]

	
	

	
	
	



	Tarantool[18]

	

	
	
	
	



	Effil[19]

	
	

	
	
	



	Lanes[20]

	
	

	
	
	



	Löve[21]

	
	

	
	
	



	ConcurrentLua[22]

	
	
	

	

	



	luaproc[23]

	
	

	
	
	



	Emilua

	

	

	

	
	










Do notice that the table won’t go into many details. For instance, several
projects allow you to use threads, but only Emilua is flexible enough that it
actually allows you to create heterogeneous thread pools where some thread may
be pinned to a single Lua VM while another thread is shared among several Lua
VMs, and some work-stealing thread pool takes care of the rest. Too many tables
would be needed to explore all the other differences.

Integrated IO engine also belongs to the comparison of concurrency models, but a
separate table solely focused on them will be presented later (only mentioning
the projects that do have one).




Table 2. NodeJS wannabes









	
	Fibers
	Threads
	Local actors
	Sandboxed actors





	Luvit[24]

	
	

	
	



	LuaNode[25]

	
	
	
	



	nodish[26]

	
	
	
	



	Emilua (not a NodeJS wannabe)

	

	

	

	










When you create a project that tries to bring together the best of two worlds,
you’re also actually bringing together the worst of two worlds. This sums up
most of the attempts to mirror NodeJS API:



	
If everything is implemented correctly, it can only achieve being as bad as
NodeJS is.


	
Horrible back-pressure.









Table 3. IO engines









	
	Linux (epoll)
	Linux (io_uring)
	BSD (kqueue)
	Windows





	cqueues

	

	
	

	



	Tarantool

	

	
	

	



	Luvit

	

	

	

	




	LuaNode

	

	

	

	




	nodish

	

	
	

	ugly[27]




	Emilua

	

	

	

	










This document deliberately left some projects out of the comparison tables. The
underlying reason is that it focuses on one problem space: the traditional
userspace-in-a-modern-OS-box. Projects such as
eLua[28],
NodeMCU[29],
XDPLua[30], and
Snabb[31] will always have a space
in the market. And the reason is quite simple: it’s not possible to cater for
very specific needs and be general at the same time. For instance, if you’re
trying to run something on the kernel side, there are specific restrictions and
concerns that will further contaminate every dependant project down the
line. It’s not merely a question of porting the same API over. The mindset
behind the whole program would need to change as well.

Emilua is young and there are plans to explore part of use cases that stretch
just a little over the traditional userspace-in-a-modern-OS-box. However it
still is a general cross-platform solution for an execution engine. It’s still
not possible to tackle very specific use cases and be general at the same time.


OpenResty

          Most of the languages are not designed to make the programmer worry about memory
allocation failing. Lua is no different. If you want to deal with resource
exhaustion, C and C++ are the only good choices.

A web server written in lua exposed directly to the web is rarely a good idea as
it can’t properly handle allocation failures or do proper resource management in
a few other areas.

OpenResty’s core is a C application (nginx). The lua application that can be
written on top is hosted by this C runtime that is well aware of the
connections, the process resources and its relationships to each lua-written
handler. The runtime then can perform proper resource management. Lua is a mere
slave of this runtime, it doesn’t really own anything.

This architecture works quite well while gives productivity to the web
application developer. Emilua can’t just compete with OpenResty. Go for
OpenResty if you’re doing an app exposed to the wide web.

Emilua can perform better for client apps that you deliver to customers. For
instance, you might develop a torrent client with Emilua and it would work
better than OpenResty. Emilua HTTP interface is also designed more like a
gateway interface, so we can, in the future, implement this interface as an
OpenResty lib to easily allow porting apps over.



	
Emilua can also be used behind a proper server.


	
Emilua can be used to quickly prototype the architecture of apps to be written
later in C++ using an API that resembles Boost.Asio a lot (and
IOFiber will bring them even closer).


	
In the future, Emilua will be able to make use of native plug-ins so you can
offload much of the resource management.


	
Emilua apps can do some level of resource (under)management by restricting the
number of connections/fibers/…​


	
Emilua won’t be that bad given its defaults (active async style, no implicit
write buffer to deal with concurrent writes, many abstractions designed with
back-pressure in mind, …​).


	
The actor model opens up some possibilities for Emilua’s future
(e.g. partition your app resources among multiple VMs and feel free to kill
the bad VMs).










Linux namespaces, Landlock, or Capsicum



https://github.com/wahern/cqueues: Designed “to be unintrusive, composable, and embeddable within existing applications” [sic].



https://www.tarantool.io/en/doc/2.1/reference/reference_lua/fiber/



https://github.com/effil/effil



http://lualanes.github.io/lanes/



https://love2d.org/wiki/love.thread: Focused on game development.



https://github.com/lefcha/concurrentlua: You could rewrite ConcurrentLua on top of Emilua, but you couldn’t rewrite Emilua on top of ConcurrentLua.



http://www.inf.puc-rio.br/~roberto/docs/ry08-05.pdf: It has a primitive model of what could become a full local actor system.



https://luvit.io/



https://github.com/ignacio/LuaNode



https://github.com/lipp/nodish



http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#WIN32_PLATFORM_LIMITATIONS_AND_WORKA



https://eluaproject.net/



https://nodemcu.readthedocs.io/



https://victornogueirario.github.io/xdplua/



https://github.com/snabbco/snabb









Internals


        

The target public for this document are C++ programmers who want to
delve into the project’s code, not lua users. Native plug-in authors should also
read this page.




The intent of this page is not to detail every internal of the project, but just
to give an overview of the architecture. Details change quickly and
documentation would lag behind, so they’re avoided.

Once you read it, you should be familiar with the assumptions made thoroughly
the project, and how to interact with the native code.

We assume that you already have some familiarity with the lua C API and
Boost.Asio.


Multiple lua VMs

          The project allows multiple OS threads to call asio::io_context::run(), so lua
VMs can jump from one thread to another freely, but they will always refer to
the same asio::io_context and each will be protected by its own ASIO strand.


        -- Instantiates a new lua VM that shares
-- the caller's `asio::io_context`
spawn_vm(module)

-- Instantiates a new lua VM in a new
-- thread with its own `asio::io_context`
spawn_vm{ module=module, inherit_context=false }


You must specify a lua module name to run in the new VM, not a function. The
module will be loaded and run in the new VM.

The only way for two different lua VMs to communicate is message passing. The
channels are given when you instantiate the extra VMs. The channels accept a
range of different values and will deep-copy them. You can also send references
to IO objects, but the original references will be rendered unusable (their
metatables are unset). Do pay attention to not let objects that have pending
operations to be sent over (EBUSY, but do create an error code just for that).

Nor synchronization primitives (such as mutex) nor fiber handles can be sent
over the channels and by implication can’t be used to synchronize (or send
cancellation requests to) fibers running in different lua VMs.

You can also send a channel over a channel. This will only send the channel
“address” over and will allow complex routing among the lua VMs. If you send a
channel’s rx-end, the other side will receive a tx-channel anyway. On the
C++-side, we need to implement a MPSC strand-based channel.

These characteristics should be enough to implement actor patterns. And it is
not the job of emilua to enforce good patterns on applications. The patterns can
be configured purely in the lua side of coding.


        -- Spawn extra threads to the
-- caller's `asio::io_context`
spawn_context_threads(count)


Leaving the actor model aside for a moment, it’s now easy to have threads with
work-stealing (e.g. 8 lua VMs sharing the same asio::io_context running on 4
threads) so you don’t have to worry about load-balancing.



Inside a single lua VM

          When you issue some IO operation (including chan:receive()), the calling fiber
will suspend, but other fibers from the same lua VM are allowed to kick in
(cooperative multitasking). Fibers can share state with each other safely (and
free from contention problems) as-if the program was single-threaded.


        -- Spawn a new fiber on this lua VM
spawn(fn)


You can use the fiber handle just like you’d use a thread handle. There is
join(), detach() and cancel().

All sync primitives obey some characteristics thanks to the restrictions we’ve
laid out:



	
They always live in the same strand. They never migrate strands.


	
They don’t synchronize with fibers from other strands (except for channels,
but that’s another story).






Given these conditions, it’s now easier to implement and reason about the C++
code.

Only the C++ code that suspended the fiber can resume it back. If the
operation should be cancellable, the async op should set an interrupter before
suspending the fiber. No other code from the runtime will wake this
fiber up. Once the interrupter is called, it’ll be cleared automatically to
prevent further complications on the async op implementation. The completion
handler should also clear the interrupter to make sure it won’t be (wrongly)
reused for other operations.

A good level of serialization can be done by exploring these properties and
simplify the implementation a lot. For once, you know no other code will wake
the fiber up, so you can just as well call io_obj.cancel() on the interrupter
and map asio::error::operation_aborted to errc::fiber_canceled on the
completion handler. A single handler (and no other) will take care of waking the
fiber. There is no race to deal with here or anything alike.

A lot of the boilerplate is handled already on the prologue/epilogue functions
from vm_context.



Userdata practices

          Besides the common practices to create custom objects through userdata, Emilua
(IO) objects will also:



	
Hide the metatable. By doing that, user code is prevented from changing the
metatable (the metatable is just an usual table after all) that native code
relies on.


	
Assume lua_setmetatable() is an indivisible operation for userdata (i.e. if
it fails, it doesn’t set a metatable nor any __gc metamethod). This
assumption is important to simplify object management by getting away with all
pre-initialization tricks teached on Roberto’s manuals and associated
complexities.


	
Assume lua_setmetatable() reports errors through exceptions (i.e. it always
returns 1). This is a superset of the previous point and it is guaranteed
by the
VM[32]. We
don’t really care as much about this point, but as it is guaranteed, the
assumption described in the previous point (which we do care about) is
covered as well.








C++ async operations

          Let’s begin with require().

require()'ing a module is also an async operation which will suspend the
caller fiber. Every module has its own isolated environment (i.e. a new lua
thread is created for every module and that thread’s environment is configured
to use a separate lua table) sharing the same lua VM. The module’s entry point
is an user-provided source code evaluated to prepare the environment with the
names that should be exported to the caller fiber. But this preparatory step may
not be immediately ready and may need to call other async operations. The rule
we define to mark a module as loaded and ready is when its main fiber finishes
(synchronization code similar to fiber:join()).

To further enforce a more manageable project layout, it is only allowed to
import new modules from the main fiber. This may introduce a “slow” startup in
some project layouts, but:



	
It is simpler to reason about the relationship of exported/imported names if
we restrict them to the same main fiber. One such use we do of this feature is
detecting whether the inbox module was loaded and close it if not.


	
We are explicitly not aiming for remote modules (e.g. JS running on a web
browser), so we don’t need to care about slow startup happening in this event.


	
In the cases where some module startup is indeed slow, the module programmer
himself can adopt lazy loading techniques within his module’s functions to
have a quick startup with respect to the rest of the application.






Modules evaluate only once and are cached. We never unload them. We keep a
reference to their lua thread for as long as the lua VM is active.

Loading a module forms a loader-loaded relationship. This relationship builds a
chain that must be checked when a new module is require()d (so we can for
instance prevent cyclic imports). But each module will have its own
environment. This means the C++ function that implements require() needs to
check lua-hidden state associated with the caller lua function (not a global
one). That’s the module system state per-module.



Rule

The per-module state is stored by using the module’s main thread as a key in the
fibers table. The fibers table is strong, but this isn’t a problem because the
module shall never be unloaded anyway. Code that unrefs fiber coroutines shall
check whether the lua thread represents a module and skip removing it from the
fibers table if so.




We can’t store the module system data directly at the thread environment because
lua code can change the thread environment by calling setfenv(0, table).

We’ve already gone through the trickiest parts and added the most important
restrictions to the table (no lua-related pun intended), so the remaining rules
should be quick’n’easy to catch.

When you initiate an async operation, the C++ side will copy the lua_State*
to handle the completion (or cancellation) later. However, any LUA_ERRMEM will
trigger an emilua-call to lua_close() and L may then be invalid when we
later try to resume it. So the completion handler need to check whether the vm
is still valid before accessing it and this is the purpose of the vm_context
structure (also protected by the same strand as the vm).



this_fiber

          As long as lua code is executing, there is a current fiber and this property
stays unchanged for as long as control doesn’t return to host.



	
transparent, adj.


	
Being or pertaining to an existing, nontangible object.


It’s there, but you can’t see it

~ IBM System/360 announcement, 1964






	
virtual, adj.


	
Being or pertaining to a tangible, nonexistent object.


I can see it, but it’s not there.

~ Lady Macbeth










This property is mostly transparent to lua code. Which is to say that the
programmer is aware of this property, but there isn’t a tangible object that it
can track back to this_fiber. This is mostly true, but there is a quite
tangible this_fiber lua global object that the user can inspect — exposed at
the beginning of the first thread execution.

However, this_fiber being a global is shared among all the fibers, so it can’t
point to a single fiber. Instead, it will query which fiber is current and do
operations on it.

C++ async ops will always store which fiber is current to know how to resume
it back. And before a fiber is resumed, this info is stored at a know lua
registry’s index so future async ops will get to know about it too. The reason
why we can’t rely on the L argument passed to C functions registered at the VM
and the current fiber needs to be remembered is because there will be a L that
points to the wrong lua thread as soon as the user wraps some function in a
coroutine.

This design works well because we don’t mix responsibilities of the scheduler
with user code (as is the case for Fiber#resume in Ruby which would be better
suited by a Fiber#spawn() that accepts post/dispatch execution
policies and would avoid the (un-)parking unsound ideas altogether).



Asynchronous event notification

          Some events are intrusive and will be generated even when no thread/fiber asked
for them. The classical example are UNIX signals. A sighandler must be
registered to handle them, but that begs the question: from which thread are
these functions called? In the C world there are multiple answers:



	
SIGEV_SIGNAL


	
The handler will be called asynchronously from any thread. That
means a lot of restrictions to what a sighandler can do.


	
SIGEV_THREAD


	
The handler will be called from an unspecified thread. Now we
have way less restrictions, but some still exist (e.g. unsafe thread-local
variables and thread cancelability state).


	
SIGEV_KEVENT


	
The golden standard for event multiplexing in the C world.






Generally the need for asynchronous events spurs from bad design and should be
avoided. However when integrating lua code to existing libraries we must deal
with asynchronous events now and then. Emilua reserves a lua coroutine/thread
for which no suspension is ever allowed and that will give the lua user a mix
between SIGEV_SIGNAL and SIGEV_THREAD restrictions. From the handler the
user can notify a condition variable to achieve friction-less handling from a
different fiber similar to what SIGEV_KEVENT enables.

From the C++ side, one just needs to get the asynchronous event (lua) thread
and rely on lua_pcall() (no need for complex lua_resume() handling, nor
fiber APIs).



LUA_ERRMEM

          Lua code cannot recover from allocation failures. As an example (and single-VM
only):


        my_mutex:lock()
scope_cleanup_push(function() my_mutex:unlock() end)


If the VM fails to allocate the closure passed to scope_cleanup_push(),
my_mutex will be kept locked and the lua code inside that VM will be in an
unrecoverable state. There’s no pattern or ordering to make resource management
work here as allocation failures can happen almost anywhere and we then inherit
some constraints and reasoning from preemptive scheduling. The only option (and
this applies to any allocation failure reported by the lua VM when running
arbitrary user code) is to terminate the VM from the C++-side.

When lua_close() is called, there is no guarantee pending operations will be
canceled as they might hold strong references to the underlying IO object
preventing its destructor from getting called. Therefore, the vm_context
structure also holds an intrusive container of polymorphic elements which are
destroyed after lua_close() is called and can be used to register cleanup code
to avoid such leaks. If the operation finishes, the IO object is free to reclaim
their own objects from this container and use them for other purposes.

lua_CFunction objects should never call lua_close(). If they detect
LUA_ERRMEM all they have to do is to mark the flags field from vm_context
and suspend the fiber. The host will take care of closing lua_State* and extra
cleanup when it recovers control of the thread.

The other side of the coin is to detect LUA_ERRMEM. All interactions with
the VM from the C API happens through the virtual stack, so naturally that’s the
first concern. You must not push anything on the stack if there’s no extra free
stack slot available. To check for such slot space, there’s lua_checkstack().

The usual C function signature is not enough to convey all the semantics
required by the Lua C API. On the
Functions and Types section from
the manual, we verify the following information:



Here we list all functions and types from the C API in alphabetical order.  Each
function has an indicator like this: [-o, +p, x]

[…​] The third field, x, tells whether the function may throw errors:
'-' means the function never throws any error; 'm' means the function
may throw an error only due to not enough memory; 'e' means the function
may throw other kinds of errors; 'v' means the function may throw an error
on purpose.





The 5.1’s signature for lua_checkstack() is:


        int lua_checkstack(lua_State *L, int extra); // [-0, +0, m]


That’s obviously bogus. If lua_checkstack() can throw on ENOMEM that means
there is no possible safe interaction with the VM. That’s — plain and simple — a bug. This bug was fixed in Lua 5.2 when the signature changed to:


        int lua_checkstack(lua_State *L, int extra); // [-0, +0, –]




Lua 5.2 received a few other improvements concerning ENOMEM such as
obsoleting lua_cpcall() by introducing light C functions. API-wise, Lua 5.2
was a great release as it fixed many shortcomings.




You don’t always need to call lua_checkstack() before doing anything thanks
to at least LUA_MINSTACK free stack slots being guaranteed for you when the VM
calls into your lua_CFunction objects. And here’s where things start to get
tricky. Consider the following Lua code:


        coroutine.wrap(function()
    spawn(function()
        print('Hello World')
    end)
end)()


The underlying C function implementing spawn() is exposed to 3 different
lua_State* handles:



	
Current fiber


	
get_vm_context(L).current_fiber(). The one that calls
coroutine.wrap().


	
Inner coroutine


	
The L parameter from lua_CFunction. The one that calls
spawn().


	
New fiber


	
lua_newthread(L) return value. The one to print “Hello World”.






If lua_error() is called on L, the stack for L will be in a completely
deterministic state. Anything this lua_CFunction object pushed on the stack
will be popped and the whole pcall()-chain on the state L will be
respected too. However lua_error() might be called indirectly through other
API functions. That’s the signature for lua_newtable():


        void lua_newtable(lua_State *L); // [-0, +1, m]


As we’ve seen previously:



'm' means the function may throw an error only due to not enough memory





“Throw” here means sorts of a call to lua_error() (LUAI_THROW to be more
accurate). That’s the pcall()-chain and each lua_State has its own (this
property won’t change even if you compile the Lua VM as C++ code). This
independent pcall()-chain for each lua_State is not a limitation from the C
API, but an accurate model of the underlying machinery happening in Lua code
itself. Consider the following snippet:


        c1 = coroutine.create(function()
    pcall(function()
        -- ...
    end)
end)


If c1 is suspended in the middle of pcall(), it retains this private
pcall()-chain that doesn’t get mixed with pcall()-chains from other
coroutines (i.e. the other lua_State* handles). Therefore the C API accurately
maps the language behaviour on retaining a private pcall()-chain for each
lua_State and we can’t expect any different behaviour here really. Lua
documentation on the issue has been ironed out little-by-little throughout its
releases. Lua 5.3 was the one to finally explicitly state the behaviour we just
described:



The panic function, as its name implies, is a mechanism of last resort. Programs
should avoid it. As a general rule, when a C function is called by Lua with a
Lua state, it can do whatever it wants on that Lua state, as it should be
already protected. However, when C code operates on other Lua states (e.g., a
Lua argument to the function, a Lua state stored in the registry, or the result
of lua_newthread), it should use them only in API calls that cannot raise
errors.

~ Lua 5.3 Reference




In short, that means our spawn() implementation that is exposed to the {L,
current fiber, new fiber} triple would throw to the wrong pcall()-chain if it
calls lua_newtable(new_fiber). The solution is to use lua_xmove() when
necessary and maintain rigorous discipline as to which C API functions are
called on “foreign” lua_State* handles paying very special attention to their
respective throw specifications. As for the discipline required,
Rici Lake wrote a
good summary on the lua-users wiki:



There are quite a number of API functions which will never throw a Lua
error. API functions that throw errors are identified in the reference manual as
of 5.1.3. First, none of the stack adjustment functions throw errors; this
includes lua_pop, lua_gettop, lua_settop, lua_pushvalue, lua_insert,
lua_replace and lua_remove. If you provide incorrect indexes to these
functions, or you haven’t called lua_checkstack, then you’re either going to
get garbage or a segfault, but not a Lua error.

None of the functions which push atomic data — lua_pushnumber, lua_pushnil,
lua_pushboolean and lua_pushlightuserdata ever throw an error. API functions
which push complex objects (strings, tables, closures, threads, full userdata)
may throw a memory error. None of the type enquiry functions — lua_is*,
lua_type and lua_typename — will ever throw an error, and neither will the
functions which set/get metatables and environments. lua_rawget, lua_rawgeti
and lua_rawequal will also never throw an error. Aside from lua_tostring,
none of the lua_to* functions will throw an error, and you can avoid the
possibility of lua_tostring throwing an out of memory error by first checking
that the object is a string, using lua_type. lua_rawset and lua_rawseti
may throw an out of memory error. The functions which may throw arbitrary errors
are the ones which may call metamethods; these include all of the non-raw get
and set functions, as well as lua_equal and lua_lt.





On a side note, Lua 5.2 added the following:



If an error happens outside any protected environment, Lua calls a panic
function (see lua_atpanic) and then calls abort, thus exiting the host
application. Your panic function can avoid this exit by never returning (e.g.,
doing a long jump to your own recovery point outside Lua).

The panic function runs as if it were a message handler (see §2.3); in
particular, the error message is at the top of the stack. However, there is no
guarantees about stack space. To push anything on the stack, the panic function
should first check the available space (see §4.2).

~ Lua 5.2 Reference




That’s actually behaviour that already existed on the version 5.1. An
alternative panic function could just throw a C++ exception to implement this
__attribute__((noreturn)) behaviour. However this hypothetical panic
function is not an alternative solution to our problems due to the combination
of the following facts:



	
As described elsewhere in this document, we require lua_error() to act as-if
it throws a C++ exception so our destructors are properly called. That
requires the underlying Lua VM (LuaJIT in our case) to throw and catch C++
exceptions.


	
A C++-throw is triggered from lua_newtable(L). The type thrown here is
internal to the Lua VM and we cannot throw it ourselves. LUA_ERRMEM
information is correctly preserved.


	
A panic is triggered from lua_newtable(new_fiber). Our panic function would
in turn discard LUA_ERRMEM and throw a generic C++ exception.


	
On lua_newtable(new_fiber) hitting LUA_ERRMEM, the L's C++-catch
handler wouldn’t receive the original error (LUA_ERRMEM). That means
information loss. That means our host code (the code that first calls into the
Lua VM) won’t call lua_close() (when it should) as its
lua_pcall()/lua_resume() call might not report the correct error reason
(LUA_ERRMEM). That also means the possibility to unwind the wrong number of
cascaded pcall() blocks (a pcall() from Lua code is not supposed to handle
LUA_ERRMEM — if correctly detected — so the number of blocks unwinded
differs whenever LUA_ERRMEM is involved).


	
Although LuaJIT can catch generic C++ exceptions, it lacks context and
cannot possibly restore the stack state on each lateral lua_State* handle at
play (the triple {L, current fiber, new fiber} in our case). If the
spawn() lua_CFunction had a value pushed on the current_fiber stack when
a new_fiber panic-triggered exception raises, the value on the
current_fiber stack wouldn’t be properly popped by the time L handles the
C++ exception (and do remember that L is executing nested on top of
current_fiber so you can already imagine the chaos here). In short, the Lua
VM needs our cooperation to maintain some invariants.


	
By wrapping these calls into our own C++ catch blocks we could work around
some of these issues, but the thought that thread control would still return
to the Lua VM one last time after the panic handler got called is just too
scary and previous mailing list threads on this topic weren’t very
reassuring. For one, if the exception is panic-triggered by current_fiber,
we won’t know what remains on this stack (except for the stack top), but
that’s exactly the lua_State that the host is operating on when our
lua_CFunction got called on L. Even if control does return safely to our
host it would still have problems to deal with there.






That covers our policy when implementing lua_CFunction objects. In short, we
cannot resort to Lua panics here and the only real solution is the rigorous
discipline on C API usage mentioned earlier.

Now let’s talk about our policy for host code. The Lua suspending IO functions
are implemented by querying which fiber is current and scheduling a
lua_resume() on it as the callback for some Boost.Asio supported C++
async_*() function (plus a ton of other details properly documented elsewhere
on this document such as strand handling and so on). The initiating function is
called from the Lua VM, but the callback is not. The callback will act as the
host.

Back to lua_resume(), this function itself doesn’t throw:


        int lua_resume(lua_State *L, int narg); // [-?, +?, –]


However the code that runs before lua_resume() might throw. This is the code
that pushes the arguments to the coroutine. For instance, if a string is one of
the coroutine parameters, you will have to use C API that might throw on
ENOMEM:


        void lua_pushlstring(lua_State *L, const char *s, size_t len); // [-0, +1, m]


It’s no use trying to call lua_pcall() to wrap lua_pushlstring()
here. lua_state() now returns LUA_YIELD and that means you can’t use
lua_pcall() on this lua_State* handle. You can’t create a new handle and use
the lua_xmove() trick either as lua_newthread() itself can throw on
ENOMEM:


        lua_State *lua_newthread(lua_State *L); // [-0, +1, m]


Fear not, for here is the place where we can finally use a panic function to
throw a custom C++ exception. There are only two caveats. The first one is
related to
LuaJIT
having such tight integration with native exceptions that it makes (almost) no
distinction between lua_pcall() and C++ catch frames[33]. The
net result is that you can use C++'s catch-all blocks and then no panic
function will ever be involved (by now you must be feeling that we just
travelled to the farthest candy shop in the kingdom just to make a full-turn
just one block away from destination when we changed our minds and decided to go
on the neighbour’s candy shop). Despite the lack of a real panic function
throwing our own exceptions, I’ll still use the same previous terminology
(i.e. panic-triggered exceptions).

The second caveat is a little charming race to avoid. The completion handler
doing the host job is executed through the strand that protects the VM. If we
let the exception escape the completion handler, another thread might try to use
the VM before we have the chance to close it. In other words, the following
approach has a race and thus is not used:


        for (;;) {
    try {
        // Completion handler allows the panic
        // exception to escape here.
        ioctx.run();
        break;
    } catch (...) {
        // This is a bug. This code isn't executed
        // through the VM strand. A pending operation
        // that just finished could try to access
        // `current` from another thread while we're
        // here.
        vm_context* current = ...;
        current->close();
        continue;
    }
}


Therefore, it is responsibility from the completion handler to handle the
panic-triggered exception (sorry about the boilerplate on your side, but that’s
the way it is).


        try {
    // lua_push*() calls
} catch (...) {
    vm_ctx->close();
    return;
}
int res = lua_resume(fiber, narg);


That is enough to cover the policy for host code and finally finish the
LUA_ERRMEM discussion too.



Channels and resources

          The biggest challenge to cross-VM resource management are the multi-strand sync
primitives (i.e. the channels). They have to execute code that jumps from one
strand to another to finish their jobs. If the associated execution context
already finished, then they would be stuck forever. The solution is for them to
keep the execution context busy through a work guard.

However some rules are needed to make this work:



	
Rx-channels (i.e. inbox) don’t keep work guards.


	
Tx-channels keep a work guard to the other end while they are alive. But they
only keep a work guard to their own strands when they have an active
operation.






If the tx-channels are not closed, they will prevent execution contexts that are
no longer necessary from being destroyed. But that’s the best we can do. We
could periodically call the GC to free unused channels, but so will lua code
anyway and there’s nothing left for us to do on the C++ side. A good practice
for lua code would be to add the following chunk at the beginning of the fiber
who’s gonna process the actor messages:


        scope_cleanup_push(function() inbox:close() end)


Extra rules for channels management:



	
As an extra safety measure, if the main fiber finishes and inbox wasn’t
imported, the runtime closes it.


	
Channels (tx and rx) also get closed when the VM is terminated.


	
Channels must only upgrade their weak references to vm_context once they
migrated to the target strand. Otherwise, they would prevent the VM from
auto-closing (and hairy problems would follow).








The exception mechanism

          C++ exceptions must not be used to propagate errors across lua/C++
frames. However, lua errors may simply trigger stack unwinding (the code makes
heavy use of setjmp()) and we do depend on RAII to keep the code correct.

It is assumed that any call to lua_error() will behave as-if it throws a C++
exception (thus triggering our destructors). We require some support from the
luaJIT VM for this. Specifically, we can’t rely on
the “no interoperability” category
from their “exception” section on the “extensions” page because the following
restriction:



Throwing Lua errors across C++ frames will not call C++ destructors.





To make matters worse, the feature we do depend on only appears in the the “full
interoperability” category:



Throwing Lua errors across C++ frames is safe. C++ destructors will be
called.





A different approach would be to implement an exception mechanism in terms of
coroutines (although it’d add to code complexity):




        Exceptions < Coroutines < Continuations


Exceptions can be thought of as a subclass of coroutines. You can implement an
exception mechanism with coroutines.

~ leafo leafo.net




But this path would be a dead-end as native lua errors would still be reported
through lua_error(). For luaJIT, lua_error() plays well with our code
because:



The LuaJIT VM is fully resumable. This means you can yield from a coroutine even
across contexts, where this would not possible with the standard Lua 5.1 VM:
e.g. you can yield across pcall() and xpcall(), across iterators and across
metamethods.

~ http://luajit.org/extensions.html#resumable




Wasn’t for this guarantee, the project would be monstrous. To understand why
this guarantee is important, let’s unravel the fundamental pattern for fibers
support. We always implicitly wrap every user code inside a lua coroutine:


        local fib = coroutine.create(user_fn)


So async operations can suspend the calling fiber and resume them later.

But user_fn might very well contain a pcall() and execute our suspending
async function inside it:


        function user_fn()
    pcall(function()
        io_obj:emilua_async_op()
    end)
end


The exception mechanism should not block our ability to suspend fibers. When our
own native code calls lua_yield() to suspend a fiber, the suspension mechanism
should be able to cross the pcall() barrier.

To wrap all up so far, the standard lua exception mechanism is used to report
errors. The only difference is that emilua will lua_error() a structured error
object inspired by std::error_code for our own errors.

Things would get a little tricky on the following point that we raised
previously though:



[…​] and we do depend on RAII to keep the code correct.





Imagine we have some code like the following:


        class reference
{
public:
    reference() : L(nullptr) {}

    reference(lua_State* L)
        : L(L)
        , idx(luaL_ref(L, LUA_REGISTRYINDEX))
    {}

    ~reference()
    {
        if (!L)
            return;

        luaL_unref(L, LUA_REGISTRYINDEX, idx);
    }

    reference(reference&& o)
        : L(o.L)
        , idx(o.idx)
    {
        o.L = nullptr;
    }

    lua_State* state() const
    {
        return L;
    }

    void push() const
    {
        assert(L);
        lua_pushinteger(L, idx);
        lua_gettable(L, LUA_REGISTRYINDEX);
    }

private:
    lua_State* L;
    int idx;
};


If an object of this type has its destructor called on lua_error()-triggered
stack unwinding, it means we’re manipulating the lua_State* (luaL_unref(L)
in this example) on stack unwinding (i.e. outside of a lua-catch block which
would be just after a pcall() return). If the VM is not in a safe state for
manipulations at this moment (this scenario just doesn’t happen if you stick
with plain C which is the target lua was developed for) then we’re
screwed. Luckily, the VM can handle such situations just fine as it is hinted on
the luaJIT documentation:




        static int wrap_exceptions(lua_State *L, lua_CFunction f)
{
  try {
    return f(L);  // Call wrapped function and return result.
  } catch (const char *s) {  // Catch and convert exceptions.
    lua_pushstring(L, s);
  } catch (std::exception& e) {
    lua_pushstring(L, e.what());
  } catch (...) {
    lua_pushliteral(L, "caught (...)");
  }
  return lua_error(L);  // Rethrow as a Lua error.
}


~ http://luajit.org/ext_c_api.html#mode_wrapcfunc Recommended usage pattern for LUAJIT_MODE_WRAPCFUNC




This guarantee is promised again (although this version of the promise is
read-only) in their “extensions” page (and again only at the full
interoperability category):



Lua errors can be caught on the C++ side with catch(…​). The corresponding
Lua error message can be retrieved from the Lua stack.

~ http://luajit.org/extensions.html#exceptions (emphasis mine)




The final piece for our puzzle is related to async ops converting
std::error_code into lua exceptions (i.e. lua_error()). The completion
handler for async ops is not called in a lua context, so they cannot just call
lua_error() and hope the correct context will catch the exception (there’s no
API similar to
resume_with()
from Boost.Context). They need to return control to the native code that
suspended the fiber so it can throw a lua exception before control returns to
lua code.

This guarantee used to exist on luaJIT 1.x (which included Coco):



Now, if the current coroutine has an associated C stack, lua_yield() returns
the number of arguments passed back from the resume.

~ http://coco.luajit.org/api.html#lua_yield




The lack of allocated C stacks brings more complications to the implementation
that will be discussed
later. lua_yieldk()
from Lua 5.2 would be enough for us (and cheaper!),
but we don’t have that either.

Yet another option would be to set an one-time hook to be called immediately
just before resuming the lua coroutine, but it’d present challenges in the
future if we ever add debugging support, so it is avoided.

And the solution Emilua get away with is wrapping the C function inside a lua
function. The C function returns a 2-tuple. If the first argument is not nil,
the lua function itself will take care of use it to raise an error.


        local error, native = ...
return function(...)
    local e, v = native(...)
    if e then
        error(e)
    else
        return v
    end
end




User-coroutines

          Let’s jump straight to a topic that gives some sense of continuity to the
previous section. The pcall() barrier is not the only barrier that the user
can insert to prevent lua_yield() from suspending the fiber. The user might
very well just wrap calls using coroutine.create():


        function user_fn()
    coroutine.create(function()
        io_obj:emilua_async_op()
    end)
end




Rule

Lua’s coroutine module must never be directly exposed to lua code.




The problem is solved by exposing a different coroutine module — a small shim
over the original one. This version inspects this_fiber's suspension reason
(native code or lua code).

Conceptually, the implementation looks like this:


        function coroutine.resume(co, ...)
    if _G.busy_coroutines[co] then
        -- CORUN
        error("cannot resume running coroutine", 2)
    end

    local args = {...}
    while true do
        local ret = {raw_coroutine.resume(co, unpack(args))}
        if ret[1] == false then
            return unpack(ret)
        end
        if _G.this_fiber.native_yield then
            _G.busy_coroutines[co] = true
            args = {raw_coroutine.yield(unpack(ret, 2))}
            _G.busy_coroutines[co] = nil
        else
            return unpack(ret)
        end
    end
end

function coroutine.yield(...)
    if _G.fibers[raw_coroutine.running()] ~= nil then
        error("bad coroutine", 2)
    end
    return raw_coroutine.yield(...)
end

function coroutine.status(co)
    if _G.busy_coroutines[co] then
        return "normal"
    end

    return raw_coroutine.status(co)
end

function coroutine.running()
    local co = raw_coroutine.running()
    if _G.fibers[co] ~= nil then
        -- Fiber's coroutines work just like the main coroutine
        return nil
    end

    return co
end

coroutine.create = ...
coroutine.wrap = ...




Dead fibers

          When an exception escapes the fiber stack, the hook registered with
sys.set_uncaught_hook() is called. The default hook prints the stack trace to
stderr and additionally terminates the VM if the exception escaped from the
main fiber. If the custom hook itself fails, the default hook is then called
anyway.

Scope handlers are properly popped and called after the hook returns control of
the thread to the runtime.

The hook is only called for detached fibers. Therefore, a different behaviour
can be chosen for each join()ed fiber. Also, if the fiber isn’t explicitly
detach()ed, the hook action will be deferred until some GC round.

There isn’t a pcall block around the whole program. lua_resume is enough and
it has the nice property of not unwinding the stack so it can be examined from
the error handler. A new lua thread is created to execute the uncaught-hook
while it has the chance to examine the unchanged error’ed call stack.



The hook mechanism isn’t implemented yet.






Functions that receive a lua callback

          There are plenty of functions that have a lua closure as a parameter
(e.g. pcall(), scope(), …​). If we blindly implement them in plain C, they
will configure a non-leaf C stack frame which we cannot suspend.

To avoid the C stack frame in the middle of the call-stack altogether, we
implement (parts of) these functions in lua, not C. The problem is then how to
expose sensitive raw resources that the C functions would use. One of the goals
is to not let these resources escape elsewhere.

A quick way to achieve it is by having a lua bootstrap function/chunk to create
closures and later change their upvalues through C:


        local private_resource = ...
return function()
    -- use `private_resource`
end


This approach is naive as luaJIT 2.x does not implement some lua functions
(i.e. the sensitive raw resources that we want to keep private) as C functions
and we cannot feed them as upvalues for the imported bytecode. For instance, we
have this behaviour for pcall():


        lua_pushcfunction(L, luaopen_base);
lua_call(L, 0, 0);
lua_getglobal(L, "pcall");
lua_CFunction pcall_addr = lua_tocfunction(L, -1);
assert(pcall_addr == nullptr); // :-(


Therefore the lua bytecode won’t be a closure with uninitialized upvalues per
se, but a function that receives the private resources and returns the needed
closure. It is an extra step on startup, but at least we save some cycles by
compiling the bytecode with stripped debug info in the project build stage.



Process environment

          A part of the process environment (e.g. UNIX signals) should be under complete
control of the program and no external library should meddle with it. However,
no protections will be provided to enforce this good practice.



VM settings inheritance

          New actors should inherit generic customization points for the GC (e.g. step
count and period) and the JIT. They should also inherit allocator settings, but
they must not be prevented from creating new actors with higher allocation
quotas (unless of course the global pool is already at its limit).



Lua 5.2/LuaJIT extensions

          We use some C functions found only on Lua 5.2+ and/or LuaJIT:



	
luaL_traceback()


	
luaopen_bit()


	
luaopen_jit()


	
luaopen_ffi()






There are projects such as
Kepler that offer a port of these functions to Lua 5.1.



2GB addressing limit

          luaJIT
has a serious 2GB limit that has been
fixed
on forks. By default, the broken 64-bit addressing mode is hidden behind
LUAJIT_ENABLE_GC64. Emilua might consider moving to
moonjit
if its author don’t try to part away from the lua 5.1 core and keep himself
distant from 5.3+ syntactic explosion madness. I don’t like this C++-like
culture expanding to lua or other languages (kudos to Go here for avoiding it).



JIT parameters

          The JIT parameters are also changed from the
old defaults:


        maxtrace=1000
maxrecord=4000
maxmcode=512  -- in KB


To defaults
based on OpenResty findings:


        maxtrace=8000
maxrecord=16000
maxmcode=40960  -- in KB




Locales

          A recent POSIX standard specified anemic per-thread and per-function locale
support, but, aside from this anemic support, C uses the same locale globally
for the whole process.

Meanwhile, C++ has somewhat usable support for multiple locales per process
(and an extra global one that also affects the global C locale).

Functions such as perror() and strerror() will query LC_MESSAGES from the
global C locale. However the sole function to query this attribute — setlocale() — is not thread-safe so we shouldn’t change the locale after the
program starts and minimal initialization to the process state is done. Changing
the global locale is highly unsafe and such API will not be exposed to Lua code.

The thread-safe C++ locales export functionality for LC_MESSAGES through the
facet std::messages. This facet allows one to open system-defined message
catalogs, and get translation messages for them. This facet exposes no
equivalent for the query setlocale(LC_MESSAGES, NULL). Even if we query it at
the beginning of the program and try to attach a new custom facet to the global
locale object, this will create a nameless locale. Unnamed global C++ locales
will break LC_MESSAGES for the C ecosystem (e.g. perror() will no longer
print localized messages). Therefore custom facets are out of question.

A direct call to setlocale(LC_MESSAGES, NULL) is avoided too because ISO C++
doesn’t define the macro LC_MESSAGES. To query the current LC_MESSAGES we
just look for LC_MESSAGES in the current C++ locale’s name. This approach
doesn’t interfere with the C ecosystem, and also paves the way for multiple
per-process locales.

One can find the list of POSIX environment variables that affect the process'
locale at
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_02.
The format for these variables is defined as:


        [language[_territory][.codeset][@modifier]]


This format is compatible with RDF’s Turtle where LANGTAG is defined as:


        LANGTAG ::= '@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*


And it matches the semantics for BCP47 definition:


        obs-language-tag = primary-subtag *( "-" subtag )
primary-subtag   = 1*8ALPHA
subtag           = 1*8(ALPHA / DIGIT)


The registry of subtags is maintained by IANA at
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry.

So LC_MESSAGES=pt_BR becomes Turtle’s "literal"@pt-BR (and at least the
subtag is case sensitive).



A Turtle language-tagged string ceases to be of the datatype
http://www.w3.org/2001/XMLSchema#string. Its datatype will be
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString. If this is a problem
for your application, do not use Turtle language-tagged strings.




For more information about C++ locales, the following links are relevant:



	
https://stdcxx.apache.org/doc/stdlibug/24-3.html


	
https://gcc.gnu.org/onlinedocs/libstdc++/manual/facets.html#std.localization.facet.messages%23facet.messages.design


	
https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html








Open questions

          

	
Describe the behaviour for sys.exit() (for main and secondary VMs). Should
it call the cancellator for every active operation? Should it exit the
application?








Extra caution to take when writing plug-ins

          Always keep in mind:



	
If you enable your IO object to be sent over channels, it’ll also be able to
migrate to a different asio::io_context and you must take care to keep a
work guard to the original asio::io_context.


	
Pending operations must hold a strong reference to vm_context and a work
guard — directly or indirectly — to vm_context.strand().


	
IO objects (channels included) by themselves must not hold any strong
references to their own vm_context (this cycle would prevent auto-closing
the VM and associated channels). Operation initiation is the perfect time to
upgrade weak references (if any) to strong ones.


	
Pending operations must not trust L from the initiating operation to decide
which fiber to wake-up later on. They must resort — at initiation time — to
the vm_context API. Check the simple sleep_for() implementation for a code
template.








Final note

          Emilua software is complex. There should be no pursuit in indefinitely extending
this base. Rather, we should search for stabilization and maturity (and also
tooling around a solid base).

If you think there should be a nice lua library to handle IRC and what-not, by
all means do write it, but write it as a separate lua library (or native
plug-in), and compete against the free market of libraries. Do not submit a
proposal to integrate it in the core. There are no batteries included. And there
shall be no committee-driven development.

Likewise, we should be stuck in the current lua syntax (5.1 plus some extensions
found in the beta branch of luaJIT
2.1[34]) forever. If you want more syntax, use a
transpiler.





http://lua-users.org/lists/lua-l/2007-10/msg00600.html



Do notice that contrary to the feeling nourished in the mailing list thread, panic functions also would work in our case. I’ve tested/verified and I also followed the relevant source code for multiple LuaJIT versions. Really, it’s okay.



http://luajit.org/extensions.html#lua52 (-DLUAJIT_ENABLE_LUA52COMPAT).









Internals (sandboxes)


        The purpose of this manual is to help you attack the system. If you’re trying to
find security holes, this section should be a good overview on how the whole
system works.

If you find any bug in the code, please responsibly send a bug report so the
Emilua team can fix it.


Message serialization

          Emilua follows the advice from WireGuard developers to avoid parsing bugs by
avoiding object serialization altogether. Sequenced-packet sockets with builtin
framing are used so we always receive/send whole messages in one API call.

There is a hard-limit (configurable at build time) on the maximum number of
members you can send per message. This limit would need to exist anyway to avoid
DoS from bad clients.

Another limitation is that no nesting is allowed. You can either send a single
non-nil value or a non-empty dictionary where every member in it is a leaf from
the root tree. The messaging API is part of the attack surface that bad clients
can exploit. We cannot afford a single bug here, so the code must be simple. By
forbidding subtrees we can ignore recursion complexities and simplify the code a
lot.

The struct used to receive messages follows:


        enum kind
{
    boolean_true    = 1,
    boolean_false   = 2,
    string          = 3,
    file_descriptor = 4,
    actor_address   = 5,
    nil             = 6
};

struct ipc_actor_message
{
    union
    {
        double as_double;
        uint64_t as_int;
    } members[EMILUA_CONFIG_IPC_ACTOR_MESSAGE_MAX_MEMBERS_NUMBER];
    unsigned char strbuf[
        EMILUA_CONFIG_IPC_ACTOR_MESSAGE_MAX_MEMBERS_NUMBER * 512];
};


A variant class is needed to send the messages. Given a variant is needed
anyway, we just adopt NaN-tagging for its implementation as that will make the
struct members packed together and no memory from the host process hidden among
paddings will leak to the containers.

The code assumes that no signaling NaNs are ever produced by the Lua VM to
simplify the NaN-tagging
scheme[35][36]. The
type is stored in the mantissa bits of a signaling NaN.

If the first member is nil, then we have a non-dictionary value stored in
members[1]. Otherwise, a nil will act as a sentinel to the end of the
dictionary. No sentinel will exist when the dictionary is fully filled.

read() calls will write to objects of this type directly (i.e. no intermediate
char[N] buffer is used) so we avoid any complexity with code related to
alignment adjustments.

memset(buf, 0, s) is used to clear any unused member of the struct before a
call to write() so we avoid leaking memory from the process to any container.

Strings are preceded by a single byte that contains the size of the string that
follows. Therefore, strings are limited to 255 characters. Following from this
scheme, a buffer sufficiently large to hold the largest message is declared to
avoid any buffer overflow. However, we still perform bounds checking to make
sure no uninitialized data from the code stack is propagated back to Lua code to
avoid leaking any memory. The bounds checking function in the code has a simple
implementation that doesn’t make the code much more complex and it’s easy to
follow.

To send file descriptors over, SCM_RIGHTS is used. There are a lot of quirks
involved with SCM_RIGHTS (e.g. extra file descriptors could be stuffed into
the buffer even if you didn’t expect them). The encoding scheme for the network
buffer is far simpler to use than SCM_RIGHTS' ancillary
data. Complexity-wise, there’s far greater chance to introduce a bug in code
related to SCM_RIGHTS than a bug in the code that parses the network buffer.

Code could be simpler if we only supported messaging strings over, but that
would just defer the problem of secure serialization on the user’s back. Code
should be simple, but not simpler. By throwing all complexity on the user’s
back, the implementation would offer no security. At least we centralized the
sensitive object serialization so only one block of code need to be reviewed and
audited.



Spawning a new process

          UNIX systems allow the userspace to spawn new processes by a fork() followed
by an exec(). exec() really means an executable will be available in the
container, but this assumption doesn’t play nice with our idea of spawning new
actors in an empty container.

What we really want is to to perform a fork followed by no exec() call. This
approach in itself also has its own problems. exec() is the only call that
will flush the address space of the running process. If we don’t exec() then
the new process that was supposed to run untrusted code with no access to system
resources will be able to read all previous memory — memory that will most
likely contain sensitive information that we didn’t want leaked. Other problems
such as threads (supported by the Emilua runtime) would also hinder our ability
to use fork() without exec()ing.

One simple approach to solve all these problems is to fork() at the beginning
of the program so we fork() before any sensitive information is loaded in the
process' memory. Forking at a well known point also brings other benefits. We
know that no thread has been created yet, so resources such as locks and the
global memory allocator stay in a well defined state. By creating this extra
process before much more extra virtual memory or file descriptor slots in our
process table have been requested, we also make sure that further processes
creation will be cheaper.


        └─ emilua program
   └─ emilua runtime (supervisor fork()ed near main())


Every time the main process wants to create an actor in a new process, it’ll
defer its job onto the supervisor that was fork()ed near main(). An
AF_UNIX+SOCK_SEQPACKET socket is used to orchestrate this process. Given the
supervisor is only used to create new processes, it can use blocking APIs that
will simplify the code a lot. The blocking read() on the socket also means
that it won’t be draining any CPU resources when it’s not needed. Also important
is the threat model here. The main process is not trying to attack the
supervisor process. The supervisor is also trusted and it doesn’t need to run
inside a container. SCM_RIGHTS handling between the main process and the
supervisor is simplified a lot due to these constraints.

However some care is still needed to setup the supervisor. Each actor will
initially be an exact copy of the supervisor process memory and we want to make
sure that no sensitive data is leaked there. The first thing we do right after
creating the supervisor is collecting any sensitive information that might still
exist in the main process (e.g. argv and envp) and instructing the
supervisor process to explicit_bzero() them. This compromise is not as good as
exec() would offer, but it’s the best we can do while we limit ourselves to
reasonably portable C code with few assumptions about dynamic/static linkage
against system libraries, and other settings from the host environment.

This problem doesn’t end here. Now that we assume the process memory from the
supervisor contains no sensitive data, we want to keep it that way. It may be
true that every container is assumed as a container that some hacker already
took over (that’s why we’re isolating them, after all), but one container
shouldn’t leak information to another one. In other words, we don’t even want to
load sensitive information regarding the setup of any container from the
supervisor process as that could leak into future containers. The solution here
is to serialize such information (e.g. the init.script) such that it is only
sent directly to the final process. Another AF_UNIX+SOCK_SEQPACKET socket is
used.

Now to the assumptions on the container process. We do assume that it’ll run
code that is potentially dangerous and some hacker might own the container at
some point. However the initial setup does not run arbitrary dangerous code
and it still is part of the trusted computing base. The problem is that we don’t
know whether the init.script will need to load sensitive information at any
point to perform its job. That’s why we setup the Lua VM that runs init.script
to use a custom allocator that will explicit_bzero() all allocated memory at
the end. Allocations done by external libraries such as libcap lie outside of
our control, but they rarely matter anyway.

That’s mostly the bulk of our problems and how we handle them. Other problems
are summarized in the short list below.



	
SIGCHLD would be sent to the main process, but we cannot install arbitrary
signal handlers in the main process as that’s a property from the application
(i.e. signal handling disposition is not a resource owned by the Emilua
runtime). The problem was already solved by making the actor a child of the
supervisor process.


	
We can’t install arbitrary signal handlers in the container process either as
that would break every module by bringing different semantics depending on the
context where it runs (host/container). To handle PID1 automatically we just
fork a new process and forward its signals to the new child.


	
"/proc/self/exe" is a resource inherited from the main process (i.e. a resource that exists outside the container. ETXTBSY will hinder the ability from the
container to meddle with "/proc/self/exe", and ETXTBSY is guaranteed by
the existence of the supervisor process (even if the main process exits, the
supervisor will stay alive).






The output from tools such as top start to become rather cool when you play
with nested containers:


        └─ emilua program
   └─ emilua runtime (supervisor fork()ed near main())
      ├─ emilua runtime (PID1 within the new namespace)
      │  └─ emilua program
      │     └─ emilua runtime (supervisor fork()ed near main())
      └─ emilua runtime (PID1 within the new namespace)
         └─ emilua program
            └─ emilua runtime (supervisor fork()ed near main())




Work lifetime management

          For Linux namespaces, PID1 eases our life a lot. As soon as any container starts
to act suspiciously we can safely kill the whole subtree of processes by sending
SIGKILL to the PID1 that started it.

For FreeBSD’s Capsicum, PD_DAEMON is not permitted in subprocesses that were
placed into capability mode. If all references to a procdesc file descriptor are
closed, the associated process will be automatically terminated by the kernel.

AF_UNIX+SOCK_SEQPACKET sockets are connection-oriented and simplify our work
even further. We shutdown() the ends of each pair such that they’ll act
unidirectionally just like pipes. When all copies of one end die, the operation
on the other end will abort. The actor API translates to MPSC channels, so we
never ever send the reading end to any container (we only make copies of the
sending end). The kernel will take care of any tricky reference counting
necessary (and SIGKILLing PID1 will make sure no unwanted end survives).

The only work left for us to do is pretty much to just orchestrate the internal
concurrency architecture of the runtime (e.g. watch out for blocking
reads). Given that we want to abort reads when all the copies of the sending end
are destroyed, we don’t keep any copy to the sending end in our own
process. Everytime we need to send our address over, we create a new pair of
sockets to send the newly created sending end over. inbox will unify the
receipt of messages coming from any of these sockets. You can think of each
newly created socket as a new capability. If one capability is revoked, others
remain unaffected.

One good actor could send our address further to a bad actor, and there is no
way to revoke access to the bad actor without also revoking access to the good
actor, but that is in line with capability-based security systems. Access rights
are transitive. In fact, a bad actor could write 0-sized messages over the
AF_UNIX+SOCK_SEQPACKET socket to trick us into thinking the channel was
already closed. We’ll happily close the channel and there is no problem
here. The system can happily recover later on (and only this capability is
revoked anyway).



Flow control

          The runtime doesn’t schedule any read on the socket unless the user calls
inbox:receive(). Upon reading a new message the runtime will either wake the
receiving fiber directly, or enqueue the result in a buffer if no receiving
fiber exists at the time (this can happen if the user canceled the fiber, or
another result arrived and woke the fiber up already). inbox:receive() won’t
schedule any read on the socket if there’s some result already enqueued in the
buffer.



setns(fd, CLONE_NEWPID)

          We don’t offer any helper to spawn a program (i.e. system.spawn()) within an
existing PID namespace. That’s intentional (although one could still do it
through init.script). setns(fd, CLONE_NEWPID) is dangerous. Only exec()
will flush the address space for the process. The window of time that exists
until exec() is called means that any memory from the previous process could
be read by a compromised container (cf. ptrace(2)).



Tests

          A mix of approaches is used to test the implementation.

There’s an unit test for every class of good inputs. There are unit tests for
accidental bad inputs that one might try to perform through the Lua API. The
unit tests always try to create one scenario for buffered messages and another
for immediate delivery of the result.

When support for plugins is enabled, fuzz tests are built as well. The fuzzers
are generation-based. One fuzzer will generate good input and test if the
program will accept all of them. Another fuzzer will mutate a good input into a
bad one (e.g. truncate the message size to attempt a buffer overflow), and check
if the program rejects all of them.

There are some other tests as well (e.g. ensure no padding exists between the
members of the C struct we send over the wire).





http://www.lua.org/source/5.2/lapi.c.html#lua_pushnumber



https://github.com/LuaJIT/LuaJIT/blob/v2.0.5/src/lj_api.c#L569









Fiber cancellation API


        Emilua also provides a fiber cancellation API that you can use to cancel fibers
(you might use it to free resources from fibers stuck in IO requets that might
never complete).

The main question that a fiber cancellation API needs to answer is how to keep
the application in a consistent state. A consistent state is a knowledge that is
part of the application and the programmer assumptions, not a knowledge encoded
in emilua source code itself. So it is okay to offload some of the
responsibility on the application itself.

One dumb’n’quick example that illustrates the problem of a consistent state
follows:


        local m = mutex.new()

local f = spawn(function()
    m:lock()
    sleep(2)
    m:unlock()
end)

sleep(1)
f:cancel()
m:lock()


Before a fiber can be discarded at cancellation, it needs to restore state
invariants and free resources. The GC would be hopeless in the previous example
(and many more) because the mutex is shared and still reachable even if we
collect the canceled fiber’s stack. There are other reasons why we can’t rely on
the GC for the job.

Windows approach to thread cancellation would be a contract. This contract
requires the programmer to never call a blocking function directly — always
using WaitForMultipleObjects(). And another rule: pass a cancellation handle
along the call chain for other functions that need to perform blocking calls.
Conceptually, this solution is just the same as Go’s:


        select {
case job <- queue:
    // ... do job ...
case <- ctx.Done():
    // goroutine cancelled
}


The difference being that Go’s Context is part of the standard library and a
contract everybody adopts. The lesson here is that cancellation is part of the
runtime, or else it just doesn’t work. In Emilua, the runtime is extended to
provide cancellation API inspired by POSIX’s thread cancellation.

The rest of this document will gloss over many details, but as long as you stay
on the common case, you won’t need to keep most of these details in mind
(sensible defaults) and for the details that you do need to remember, there is a
smaller “recap” section at the end.



Do not copy-paste code snippets surrounded by WARNING blocks. They’re most
likely to break your program. Do read the manual to the end. These code snippets
are there as intermediate steps for the general picture.





The lua exception model

          It is easy to find a try-catch construct in mainstream languages like so:


        try {
    // code that might err
} catch (Exception e) {
    // error handler
}

// other code


And here’s lua translation of this pattern:


        local ok = pcall(function()
    -- code that might err
end)
if not ok then
    -- error handler
end
-- other code


The main difference here is that lua’s exception mechanism doesn’t integrate
tightly with the type system (and that’s okay). So the catch-block is always
a catch-all really. Also, the structure initially suggests we don’t need special
syntax for a finally block:


        try {
    // code that might err
} catch (Exception e) {
    // error handler
} finally {
    // cleanup handler
}

// other code



        local ok = pcall(function()
    -- code that might err
end)
if not ok then
    -- error handler
end
-- cleanup handler
-- other code


In sloppy terms, the cancellation API just re-schedules the fiber to be resumed
but with the fiber stack slightly modified to throw an exception when execution
proceeds. This property will trigger stack unwinding to call all the error &
cleanup handlers in the reverse order that they were registered.



The cancellation protocol

          The fiber handle returned by the spawn() function is the heart to communicate
intent to cancel a fiber. To better accommodate support for structured
concurrency and not introduce avoidable co-dependency between them, we follow
the POSIX thread cancellation model (Java’s confusing state machine is
ignored). Long story short, once a fiber has been canceled, it cannot be
un-canceled.

To cancel a fiber, just call the cancel() function from a fiber handle:


        fib:cancel()




You can only cancel joinable fibers (but the function is safe to call
with any handle at any time).




Afterwards, you can safely join() or detach() the target fiber:


        fib:join()

-- ...or
fib:detach()


If you don’t detach a fiber, the GC will do it for you.

It’s that easy. Your fiber doesn’t need to know the target fiber’s internal
state and the target fiber doesn’t need to know your fiber' internal state. On
the other end, to handle an cancellation request is a little trickier.



Handling cancellation requests

          The key concept required to understand the cancellation’s flow is the
cancellation point. Understand this, and you’ll have learnt how to handle
cancellation requests.



Definition

An cancellation point configures a point in your application where it is
allowed for the Emilua runtime to stop normal execution flow and raise an
exception to trigger stack unwinding if an cancellation request from another
fiber has been received.




When the possibility of cancellation is added to the table, your mental model
has to take into account that calls to certain functions now might throw an
error for no other reason but rewind the stack before freeing the fiber.

The only places that are allowed to serve as cancellation points are calls to
suspending functions (plus the pcall() family and coroutine.resume() for
reasons soon to be explained).


        -- this snippet has no cancellation points
-- exceptions are never raised here
local i = 0
while true do
    i = i + 1
end


The following function doesn’t need to worry about leaving the object self in
an inconsistent state if the fiber gets canceled. And the reason for this is
quite simple: this function doesn’t have cancellation points (which is usually
the case for functions that are purely compute-bound). It won’t ever be canceled
in the middle of its work.


        function mt:new_sample(sample)
    self.mean_ = self.a * sample + (1 - self.a) * self.mean_
    self.f = self.a + (1 - self.a) * self.f
end


Functions that suspend the fiber (e.g. IO and functions from the
condition_variable module) configure cancellation points. The function echo
defined below has cancellation points.


        function echo(sock, buf)
    local nread = sock:read(buf) ①
    sock:write(buf, nread)       ②
end


Now take the following code to orchestrate the interaction between two fibers.


        local child_fib = spawn(function()
    local buf = buffer.new(1024)
    echo(global_sock, buf)
end)

child_fib:cancel()


The mother-fiber doesn’t have cancellation points, so it executes til the
end. The child_fib fiber calls echo() and echo() will in turn act as a
cancellation point (i.e. the property of being a cancellation point propagates
up to the caller functions).



this_fiber.yield() can be used to introduce cancellation points for
fibers that otherwise would have none.




The mother-fiber doesn’t call any suspending function, so it’ll run until the
end and only yields execution back to other fibers when it does end. At the last
line, a cancellation request is sent to the child fiber. The runtime’s scheduler
doesn’t guarantee when the cancellation request will be delivered and can
schedule execution of the remaining fibers with plenty of freedom given we’re
not using any synchronization primitives.

In this simple scenario, it’s quite likely that the cancellation request will be
delivered pretty quickly and the call to sock:read() inside echo() will
suspend child_fib just to awake it again but with an exception being raised
instead of the result being returned. The exception will unwind the whole stack
and the fiber finishes.

Any of the cancellation points can serve for the fiber to act on the
cancellation request. Another possible point where these mechanisms would be
triggered is the sock:write() suspending function.



The uncaught-hook isn’t called when the exception is fiber_canceled so
you don’t really have to care about trapping cancellation exceptions. You’re
free to just let the stack fully unwind.







        local child_fib = spawn(function()
    local buf = buffer.new(1024)
    global_sock_mutex:lock()
    local ok, ex = pcall(function()
        echo(global_sock, buf)
    end)
    global_sock_mutex:unlock()
    if not ok then
        error(ex)
    end
end)





To register a cleanup handler in case the fiber gets canceled, all you need
to do is handle the raised exceptions.

A fiber is always either canceled or not canceled. A fiber doesn’t go back to
the un-canceled state. Once the fiber has been canceled, it’ll stay in this
state. The task in hand is to rewind the stack calling the cleanup handlers to
keep the application state consistent after the GC collect the fiber — all done
by the Emilua runtime.

So you can’t call more suspending functions after the fiber gets canceled:


        local ok, ex = pcall(function()
    -- lots of IO ops                ①
end)
if not ok then
    watchdog_sock:write(errored_msg) ②
    error(ex)
end




	① Lots of cancellation points. All swallowed by pcall().

	② If fiber gets canceled at #1, it won’t init any IO operation here but
instead throw another fiber_canceled exception.





The previous snippet has an error. To properly achieve the desired behaviour,
you have to temporally disable cancellations in the cleanup handler like so:


        local ok, ex = pcall(function()
    -- lots of IO ops
end)
if not ok then
    this_fiber.disable_cancellation()
    pcall(function()
        watchdog_sock:write(errored_msg)
    end)
    this_fiber.restore_cancellation()
    error(ex)
end




this_fiber.restore_cancellation() has to be called as many times as
this_fiber.disable_cancellation() has been called to restore cancelability.




It looks messy, but this behaviour actually helps the common case to stay
clean. Were not for these choices, a common fiber that doesn’t have to handle
cancellation like the following would accidentally swallow a cancellation
request and never get collected:


        local ok = false
while not ok do
    ok = pcall(function()
        my_udp_sock:send(notify_msg)
    end)
end


And the pcall() family in itself also configures a cancellation point exactly
to make sure that loops like this won’t prevent the fiber from being properly
canceled. pcall() family and coroutine.resume() are the only functions which
aren’t suspending functions but introduce cancellation points nevertheless.



It is guaranteed that fib:cancel() will never be a cancellation point (and
neither a suspension point).

This guarantee is useful to build certain concurrency patterns.






The scope() facility

          The control flow for the common case is good, but handling cancellations right
now is tricky to say the least. To make matters less error-prone, the scope()
family of functions exist.



	
scope()


	
scope_cleanup_push()


	
scope_cleanup_pop()






The scope() function receives a closure and executes it, but it maintains a
list of cleanup handlers to be called on the exit path (be it reached by the
common exit flow or by a raised exception). When you call it, the list of
cleanup handlers is empty, and you can use scope_cleanup_push() to register
cleanup handlers. They are executed in the reverse order in which they were
registered. The handlers are called with the cancellations disabled, so you
don’t need to disable them yourself.



It is safe to have nested scope()s.




One of the previous examples can now be rewritten as follows:


        local child_fib = spawn(function()
    local buf = buffer.new(1024)
    global_sock_mutex:lock()
    scope_cleanup_push(function() global_sock_mutex:unlock() end)
    echo(global_sock, buf)
end)




A hairy situation happens when a cleanup handler itself throws an error. The
reason why the default uncaught-hook doesn’t terminate the VM when secondary
fibers fail is that cleanup handlers are trusted to keep the program
invariants. Once a cleanup handler fails we can no longer hold this assumption.

Once a cleanup handler itself throws an error, the VM is
terminated[37]
(there’s no way to recover from this error without context, and conceptually by
the time uncaught hooks are executed, the context was already lost). If you need
some sort of protection against one complex module that will fail now and then,
run it in a separate actor.

In C++ this scenario is analogous to a destructor throwing an exception when
the destructor itself was triggered by an exception-provoked stack
unwinding. And the result is the same,
terminate().




If you want to call the last registered cleanup handler and pop it from the
list, just call scope_cleanup_pop(). scope_cleanup_pop() receives an
optional argument informing whether the cleanup handler must be executed after
removed from the list (defaulting to true).


        scope(function()
    scope_cleanup_push(function()
        watchdog_sock:write(errored_msg)
    end)

    -- lots of IO ops

    scope_cleanup_pop(false)
end)


Every fiber has an implicit root scope so you don’t need to always create one
yourself. The standard lua’s pcall() is also modified to act as a scope which
is a lot of convenience for you.



Given pcall() is also an cancellation point, examples written
enclosed in WARNING blocks from the previous section had bugs related to
maintaining invariants and the scope() family is the safest way to register
cleanup handlers.






IO objects

          It’s not unrealistic to share a single IO object among multiple fibers. The
following snippets are based (the original code was not lua’s) on real-world
code:

Listing 1. Fiber ping-sender
        while true do
    sleep(20)
    write_mutex:lock()
    scope_cleanup_push(function() write_mutex:unlock() end)
    local ok = pcall(function() ws:ping() end)
    if not ok then
        return
    end
    scope_cleanup_pop()
end


Listing 2. Fiber consume-subscriptions
        while true do
    local ok = pcall(function()
        -- `app` may call `write_mutex:lock()`
        app:consume_subscriptions()
    end)
    if not ok then
        return
    end
    -- uses `condition_variable`
    app:wait_on_subscriptions()
end


Listing 3. Fiber main
        local buffer = buffer.new(1024)
while true do
    local ok = pcall(function()
        local nread = ws:read(buffer)
        -- `app` may call `write_mutex:lock()`
        app:on_ws_read(buffer, nread)
    end)
    if not ok then
        break
    end
end

f1:cancel()
f2:cancel()
this_fiber.disable_cancellation()
f1:join()
f2:join()


A fiber will never be canceled in the middle (tricky concept to define) of
some IO operation. If a fiber suspended on some IO operation and it was
successfully canceled, it means the operation is not delivered at all and can be
tried again later as if it never happened in the first place. The following
artificial example illustrates this guarantee (restricting the IO object to a
single fiber to keep the code sample small and easy to follow):


        scope_cleanup_push(function()
    my_sctp_sock:write(checksum.shutdown_msg)
end)
while true do
    sleep(20)
    my_sctp_sock:write(broadcast_msg)
    checksum:update(broadcast_msg)
end


If the cancellation request arrives when the fiber is suspended at
my_sctp_sock:write(), the runtime will schedule cancellation of the underlying
IO operation and only resume the fiber when the reply for the cancellation
request arrives. At this point, if the original IO operation already succeeded,
fiber_canceled exception won’t be raised so you have a chance to examine the
result and the cancellation handling will be postponed to the next cancellation
point.



The pcall() family actually provides the same fundamental
guarantee. Once it starts executing the argument passed, it won’t throw any
fiber_canceled exception so you have a chance to examine the result of the
executed code. The pcall() family only checks for cancellation requests before
executing the argument.






Some IO objects might use relaxed semantics here to avoid expensive
implementations. For instance, HTTP sockets might close the underlying TCP
socket if you cancel an IO operation to avoid bookkeeping state.

Refer to their documentation to check when the behaviour uses relaxed
semantics. All in all, they should never block indefinitely. That’s a guarantee
you can rely on. Preferably, they won’t use a timeout to react on cancellations
either (that would be just bad).






User-level coroutines

          

Cancelability is not a property from the coroutine. The coroutine can
be created in one fiber, started in a second fiber and resumed in a third
one. Cancelability is a property from the fiber.





        fibonacci = coroutine.create(function()
    local a, b = 0, 1
    while true do
        a, b = b, a + b
        coroutine.yield(a)
    end
end)


coroutine.resume() swallows exceptions raised within the coroutine, just like
pcall(). Therefore, the runtime guarantees coroutine.resume() enjoys the
same properties found in pcall():



	
coroutine.resume() is a cancellation point.


	
coroutine.resume() only checks for cancellation requests before resuming the
coroutine (i.e. the cancellation notification is not fully asynchronous).


	
Like pcall(), coroutine.create() will also create a new scope() for the
closure. However, this scope (and any nested one) is independent from the
parent fiber and tied not to the enclosing parent fiber’s lexical scopes but
to the coroutine lifetime.






We can’t guarantee deterministic resumption of zombie coroutines to (re-)deliver
cancellation requests (nor should). Therefore, if the GC collects any of your
unreachable coroutines with remaining scope_cleanup_pop() to be done, it does
nothing besides collecting the coroutine stack. You have to prepare your code to
cope with this non-guarantee otherwise you most likely will have buggy code.


        local co = coroutine.create(function()
    m:lock()
    -- this handler will never be called
    scope_cleanup_push(function() m:unlock() end)
    coroutine.yield()
end)

coroutine.resume(co)


The safe bet is to just structure the code in a way that there is no need to
call scope_cleanup_push() within user-created coroutines.



Recap

          The fiber handle returned by spawn() has a cancel() member-function that can
be used to cancel joinable fibers. The fiber only gets canceled at cancellation
points. To preserve invariants your app relies on, register cleanup handlers
with scope_cleanup_push().

The relationship between user-created coroutines and cancellations is tricky.
Therefore, you should avoid creating (either manually or through some
abstraction) cleanup handlers within them.


        this_fiber.disable_cancellation()
local numbers = {8, 42, 38, 111, 2, 39, 1}

local sleeper = spawn(function()
    local children = {}
    scope_cleanup_push(function()
        for _, f in pairs(children) do
            f:cancel()
        end
    end)
    for _, n in pairs(numbers) do
        children[#children + 1] = spawn(function()
            sleep(n)
            print(n)
        end)
    end
    for _, f in pairs(children) do
        f:join()
    end
end)

local sigwaiter = spawn(function()
    local sigusr1 = signals.new(signals.SIGUSR1)
    sigusr1:wait()
    sleeper:cancel()
end)

sleeper:join()
sigwaiter:cancel()






I initially drafted a design to recover on limited scenarios (check git history if you’re curious), but then realized it was not only brittle but also unable to handle leaked fiber handles. Worse, it was very sensitive to leak fiber handles. Therefore I dismissed the idea altogether.









Lua 5.1


        Emilua is based on LuaJIT which means Lua 5.1 + some Lua 5.2 extensions. However
some builtin Lua modules conflict with Emilua modules and thus are not
available. This page lists the divergences.


Enabled modules

          

	
Basic library, which includes the coroutine sub-library.


	
String.


	
Table.


	
Math.


	
BitOp.


	
JIT.


	
FFI.






In other words, the following modules are not enabled:



	
IO.


	
OS.


	
Package (a replacement which may or may not be a drop-in replacement will be
available in the future).


	
Debug (it’ll be available in a future release).











Modules


        Emilua has its own module system. It may look familiar, and indeed it is the
intention. Given the fact that other libraries on the wild will have
incompatible execution models, compatibility with existing lua libraries is not
a concern (although it is most likely to just work for libraries w/o advanced
needs).

The module system is highly inspired by the Rust packaging system. The two
languages, however, are too different and these differences impact the module
system as well. To import a module in dynamic languages such as lua, Python and
JavaScript, it is to evaluate/execute source code. Rust doesn’t have this
constraint and Rust gets just fine with a lot of static analysis. The two
languages live in separate worlds. Finally, the module system is also inspired
by what Python and NodeJS do.

A module system is meant to isolate pieces of code, symbols and names. One
module should not interfere with each other. And a module can have dependencies
on other modules to reuse code. So, there is the need for private members and
exported members. Lua has all features we need — closures, nested scopes,
environments, global scope as a table — to implement a module system easily.


Quick-start

          The things you need to know to get started:



	
require() is a free function receiving a string with the module id and
returning the module. Two imports to the same module will only evaluate it
once. The result is cached per running VM instance.


	
Every file you write is a module.


	
Global names will be exported for modules that import your module.


	
Modules can also be directories. In this case, a file named init.lua will be
searched and imported in that directory. init.lua can import any other
module inside its directory.


	
Cyclic references are unsupported and will raise an error on import.


	
You can use the syntax require('../foobar') to import a sibling module named
foobar.


	
If the module id doesn’t start with './' or '../' then it is assumed to
refer to an external package and different rules apply (see section at the
end).







Small example

          File src/init.lua:


        local server = require('./server')

local hostname = '127.0.0.1'
local port = 3000

local s = server.new(function(sock, req, res)
  res.headers = {
    ['content-type'] = 'text/plain'
  }
  res.body = 'Hello World\n'
  sock:write_response(res)
end)

s:listen(hostname, port)


File src/server.lua:


        local ip = require('ip')
local http = require('http')

local mt = {}
mt.__index = mt

function new(handler)
  return setmetatable({ handler = handler }, mt)
end

function mt:listen(hostname, port)
  local acceptor = ip.tcp.acceptor.new()
  acceptor:open(ip.address.new(hostname))
  acceptor:bind(hostname, port)
  acceptor:listen()
  spawn(function()
    while true do
      local s = http.socket.new(acceptor:accept())
      spawn(function()
        local req = http.request.new()
        local res = http.response.new()

        while true do
          s:read_request(req)
          res.status = 200
          res.reason = 'OK'
          res.headers = nil
          res.body = nil
          res.trailers = nil
          self.handler(s, req, res)
        end
      end)
    end
  end):detach()
end





Big modules

          A typical project structure may look as follows:


        src
├── init.lua
├── my_module
│   ├── error.lua
│   ├── init.lua
│   ├── util.lua
│   └── worker.lua
└── util.lua


In this example, there is the project scope whose root begins at src/init.lua — the root module.

In the root module, it is forbidden to use require('../') statements as there
is no parent module. Any name the src/init.lua file require()s will be
searched on the src directory. For instance, if src/init.lua contains
require('./util'), emilua will use the src/util.lua file to define the
importing module.

But modules may grow and can be further split into files within a directory by
itself. That was the case for my_module. The init.lua file in that directory
will be searched for, and, once found, evaluated. If src/my_module/init.lua
contains more require() calls whose arguments start with './', files within
that directory (src/my_module) will be searched for.

For instance, if src/my_module/init.lua contains require('./worker'), the
file src/my_module/worker.lua will be searched for. Any file (except for
init.lua) within src/my_module can import other files from the same
directory (i.e. their siblings) using the require('../') form
(src/my_module/init.lua siblings live in the directory above, src). For
instance, src/my_module/worker.lua and src/my_module/util.lua may both want
to use the same error type (possibly private) to that module — src/my_module/error.lua. In this case, all they need to contain is the call
require('../error'). And finally due to how they are defined by files (not
directories by themselves), they don’t have children modules and can’t use the
usual require('./') call (i.e. the call argument must start with ../).

Any number of super levels is allowed (e.g. require('../../../../foobar')).



External packages

          If the module name to import doesn’t begin with './' nor '../' then it’ll be
searched for outside of the project directory. The places Emilua will look for
are:



	
Core modules (e.g. 'inbox').


	
External packages.






Emilua looks for external packages by examining the following locations (in that
order):



	
The EMILUA_PATH environment variable. That’s a colon-separated
list[38] of directories.


	
The installation-dependent default (usually $PREFIX/lib/emilua-$VERSION).








Misc

          You might be interested in restricting the filenames of your modules to the set
discovered by Boost developers over the years:



	
https://www.boost.org/development/requirements.html#Directory_structure










It’s semicolon-separated on Windows.









Errors


        Emilua is a concurrency runtime for Lua programs. The intra-VM concurrency
support is exploited to offer async I/O. IO errors reported from the operating
system are preserved and reported back to the user. That’s specially important
for logging and tracing.

POSIX systems report errors through errno. Meanwhile Windows report errors
through GetLastError(). In both cases, we have an integer holding an error
code. So that’s the first piece of information captured and reported.

The enumeration for errno cannot be extended by libraries or user code, so
each new module that uses the same error reporting style (integer error codes)
must defined their own enumeration (which can safely conflict with error code
values from errno). The origin of the integer code defines the error
domain. For instance, POSIX’s getaddrinfo() uses its own set of error codes
(EAI_…​). The error domain is the second piece of information captured and
reported by Emilua: that’s the error category.

An error reported by Emilua is a Lua table with two members:



	
code: integer


	
The error code (e.g. value from errno).


	
category: userdata


	
An object that encodes the error domain (e.g. whether
value was read out of errno).






Extra information about the error’s origin might be available depending on the
function that throws the error (e.g. many functions attach the integer "arg"
for EINVAL errors).


The error category

          Error categories define the metamethods __tostring() and
__eq(). The category for errors read from errno (or GetLastError()
on Windows) will return "system" for __tostring(). That’s the
category’s name.

Another important category on Emilua is the "generic" category. This category
is meant to represent POSIX errors (even on Windows). The purpose of this
category is to compare errors portably so you can write cross-platform programs,
but you’ll see more on that later.


message(self, code: integer) → string

          Returns the explanatory message string for the error specified by code.

For the "system" category on POSIX platforms, that’s the same as strerror(3p).




The error table

          The metatable for raised error tables also define the metamethods
__tostring() and __eq(). Its __tostring() is just a
shorthand to use the category’s message(). Only code and category are
compared for __eq() and extra members are ignored.


togeneric(self) → error_code

          That’s a function present in __index. It’ll return the default error
condition for self.

For instance, filesystem.create_hardlink() will report the original error
from the OS so you don’t lose information on errors. On Windows, this function
might throw ERROR_ALREADY_EXISTS, but this error maps perfectly to POSIX’s
EEXIST. If you’re reacting on error codes to determine an action to take
(i.e. you’re actually handling the error instead of throwing it up higher in the
stack or logging/tracing it), then adding the specific error code for each
platform serves you no purpose. That’s the purpose for the function
togeneric(). If there’s a mapping between the error code and POSIX, it’ll
return a new error table from the "generic" category. If no such mapping
exists, the original error is returned.


        local ok, ec = pcall(...)
if ec:togeneric() == generic_error.EEXIST then
    -- ...
end





RDF error categories

          Errors are also user-extensible by defining your own error categories. Emilua
has the concept of modules defined by RDF’s Turtle
files[39]. In the future, this
will also be used to define application/packaging resources in Android and
Windows binaries, for instance. However, right now, they’re only used to define
error categories.


        # Easter egg codes from:
# <https://www.gnu.org/software/libc/manual/html_node/Error-Codes.html>

@prefix cat: <https://schema.emilua.org/error_category/0/#>.

<about:emilua-module>
	a <https://schema.emilua.org/error_category/0/>;
	cat:error [
		cat:code 1;
		cat:alias "ED";
		# The experienced user will know what is wrong.
		cat:message "?"
	], [
		cat:code 2;
		cat:alias "EGREGIOUS";
		# You did what?
		cat:message "You really blew it this time",
			"Você realmente se superou dessa vez"@pt-BR
	], [
		cat:code 3;
		cat:alias "EIEIO";
		# Go home and have a glass of warm, dairy-fresh milk.
		cat:message "Computer bought the farm"
	], [
		cat:code 4;
		cat:alias "EGRATUITOUS";
		# This error code has no purpose.
		cat:message "Gratuitous error"
	].




[Turtle is] RDF syntax for those with taste

~ David Robillard LV2 co-author




Just throw a .ttl file in the place where you’d put your .lua file and the
module system will find it.


        local my_error_category = require "/my_error_category"

-- it creates a new error every time,
-- so you don't need to worry about reusing
-- old values
local my_error = my_error_category.EGREGIOUS
my_error.context = "Lorem ipsum"
error(my_error)




You can also refer to errors in a category module by number, but that should be
avoided:


        error(my_error_category[2])





You can also define a mapping for generic errors:


        @prefix cat: <https://schema.emilua.org/error_category/0/#>.

<about:emilua-module>
	a <https://schema.emilua.org/error_category/0/>;
	cat:error [
		cat:code 1;
		cat:alias "operation_would_block",
			"resource_unavailable_try_again";
		cat:message "Resource temporarily unavailable";
		cat:generic_error "EAGAIN"
	].




It might be useful to define generic errors for categories other than
"generic"
too[40]. However
Emilua doesn’t offer this ability yet as someone needs to put some thought on
the design.




This is an unusual design in the Lua ecosystem, so you might want some
rationale:
https://blog.emilua.org/2021/03/14/lua-errors-from-multiple-vms/.





https://github.com/JoshData/rdfabout



http://breese.github.io/2017/05/12/customizing-error-codes.html









Sandboxes


        Emilua provides support for creating actors in isolated processes using
Capsicum, FreeBSD jails, Seccomp, Linux namespaces or Landlock. The idea is to
prevent potentially exploitable code from accessing resources beyond what has
been explicitly handed to them. That’s the basis for capability-based security
systems, and it maps pretty well to APIs implementing the actor model such as
Emilua.



[image: If someone steals my laptop while I’m logged in, they can read my email, take my money, and impersonate me to my friends, but at least they can’t install drivers without my permission.]


Figure 1. XKCD 1200: Authorization

Even modern operating systems are still somehow rooted in an age where we didn’t
know how to properly partition computer resources adequately to user needs
keeping a design focused on practical and conscious security. Several solutions
are stacked together to somehow fill this gap and they usually work for most of
the applications, but that’s not all of them.

Consider the web browser. There is an active movement that try to push for a
future where only the web browser exists and users will handle all of their
communications, store & share their photos, book hotels & tickets, check their
medical history, manage their banking accounts, and much more…​ all without
ever leaving the browser. In such scenario, any protection offered by the OS to
protect programs from each other is rendered useless! Only a single program
exists. If a hacker exploits the right vulnerability, all of the user’s data
will be stolen. There is no real compartmentalisation.

The browser is part of a special class of programs. The browser is a shell. A
shell is any interface that acts as a layer between the user and the world. The
web browser is the shell for the www world. Www browser or not, any shell will
face similar problems and has to be consciously designed to safely isolate
contexts that distrust each other. The Emilua team is not aware of anything
better than FreeBSD’s Capsicum to do just this. In the absence of Capsicum, we
have Linux Landlock which can be used to build something close. Browsers
actually use Linux namespaces which are older.


The API

          

Compartmentalised application development is, of necessity, distributed
application development, with software components running in different processes
and communicating via message passing.

~ Capsicum: practical capabilities for UNIX Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway




The Emilua’s API to spawn an actor lies within the reach of a simple function
call:


        local my_channel = spawn_vm(module)


Check the manual elsewhere to understand the details. As for sandboxes, the idea
is to spawn an actor where no system resources are available (e.g. the
filesystem is mostly empty, no network interfaces are available, no PIDs from
other processes can be seen, …​).

Consider the hypothetical sandbox class:


        local mysandbox1 = sandbox.new()
local my_channel = spawn_vm(mysandbox1:context(module))
mysandbox1:handshake()


That would be the ideal we’re pursuing. Nothing other than 2 extra lines of code
at most under your application. All complexity for creating sandboxes taken care
of by specialized teams of security experts. The Capsicum
paper[41]
released in 2010 analysed and compared different sandboxing technologies and
showed some interesting figures. Consider the following figure that we reproduce
here:




Table 4. Sandboxing mechanisms employed by Chromium








	Operating system
	Model
	Line count
	Description





	Windows

	ACLs

	22350

	Windows ACLs and SIDs




	Linux

	chroot

	605

	setuid root helper sandboxes renderer




	Mac OS X

	Seatbelt

	560

	Path-based MAC sandbox




	Linux

	SELinux

	200

	Restricted sandbox type enforcement domain




	Linux

	seccomp

	11301

	seccomp and userspace syscall wrapper




	FreeBSD

	Capsicum

	100

	Capsicum sandboxing using cap_enter










Do notice that line count is not the only metric of interest. The original paper
accompanies a very interesting discussion detailing applicability, risks, and
levels of security offered by each approach. Just a few years after the paper
was released, user namespaces was merged to Linux and yet a new option for
sandboxing is now available. Fast-forward a few more years and we also have
Linux Landlock which is even better than Linux namespaces. Within this
discussion, we can discard most of the approaches — DAC-based, MAC-based, or
too intrusive to be even possible to abstract away as a reusable component — as
inadequate to our endeavour.

Out of them, Capsicum wins hands down. It’s just as capable to isolate parts of
an application, but with much less chance to error (for the Chromium patchset,
it was just 100 lines of extra C code after all). Unfortunately, Capsicum is not
available in every modern OS.

Do keep in mind that this is code written by experts in their own fields, and
their salary is nothing less than what Google can afford. 11301 lines of code
written by a team of Google engineers for a lifetime project such as Google
Chromium is not an investment that any project can afford. That’s what the
democratization of sandboxing technology needs to do so even small projects can
afford them. That’s why it’s important to use sound models that are easy to
analyse such as capability-based security systems. That’s why it’s important to
offer an API that only adds two extra lines of code to your application. That’s
the only way to democratize access to such technology.



Rust programmers' vision of security is to rewrite the world in Rust, a
rather unfeasible undertaking, and a huge waste of resources. In a similar
fashion, Deno was released to exploit v8 as the basis for its sandboxing
features (now they expect the world to be rewritten in TypeScript). The heart of
Emilua’s sandboxing relies on technologies that can isolate any code (e.g. C
libraries to parse media streams).




Back to our API, the hypothetical sandbox class that we showed earlier will
have to be some library that abstracts the differences between each sandbox
technology in the different platforms. The API that Emilua actually exposes as
of this release abstracts all of the semantics related to actor messaging,
work/lifetime accounting, process reaping, DoS protection, serialization, lots
of Linux namespaces details (e.g. PID1), and much more, but it still expects you
to actually initialize the sandbox.



The init.script

          Every process carries associated credentials that enable operation on
system-wide addressable objects such as filesystem objects and sockets. We setup
a sandbox by disabling the ambient authority so the address space itself becomes
inaccessible. Sandboxed code thus should be run only after such setup already
completed successfully. The proper hook to perform this setup is
init.script. init.script runs right after the process is created.

After the sandboxed actor is up it can receive access to new resources through
its inbox. If any security exploit is performed on the sandboxed code, then only
the objects it has access to are rendered vulnerable (the damage is thus
contained in its compartment).


Landlock (Linux)

          
        local init_script = [[
    local rules = C.landlock_create_ruleset{ handled_access_fs = {
        "execute", "write_file" "read_file", "read_dir", "remove_dir",
        "remove_file", "make_char", "make_dir", "make_reg", "make_sock",
        "make_fifo", "make_block", "make_sym", "refer", "truncate" } }
    set_no_new_privs()
    C.landlock_restrict_self(rules)
]]

spawn_vm{
    subprocess = {
        init = { script = init_script }
    }
}


Landlock as of now can only control access to filesystem objects, but future
versions will be more complete.



Capsicum

          
        spawn_vm{
    subprocess = {
        init = { script = "C.cap_enter()" }
    }
}







https://www.cl.cam.ac.uk/research/security/capsicum/papers/2010usenix-security-capsicum-website.pdf









Linux namespaces


        Here we show a few recipes on how to deal with Linux namespaces from Emilua.



LWN.net has a good overview
on Linux namespaces.





The user namespace

          Unless you execute the process as root, Linux will deny the creation of all
namespaces except for the user namespace. The user namespace is the only
namespace that an unprivileged process can create. However it’s fine to pair the
user namespace with any combination of the other ones.

When a user namespace is created, it starts out without a mapping of user IDs
and group IDs to the parent user namespace. One can fill the mapping directly as
shown in the example that follows:


        local init_script = [[
    local uidmap = C.open('/proc/self/uid_map', C.O_WRONLY)
    send_with_fd(arg, '.', uidmap)
    C.write(C.open('/proc/self/setgroups', C.O_WRONLY), 'deny')
    local gidmap = C.open('/proc/self/gid_map', C.O_WRONLY)
    send_with_fd(arg, '.', gidmap)

    -- sync point
    C.read(arg, 1)
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

spawn_vm{
    subprocess = {
        newns_user = true,
        init = { script = init_script, arg = sguest }
    }
}
sguest:close()
local ignored_buf = byte_span.new(1)

local uidmap = ({system.getresuid()})[2]
uidmap = byte_span.append('0 ', tostring(uidmap), ' 1\n')
local uidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(uidmapfd):write_some(uidmap)

local gidmap = ({system.getresgid()})[2]
gidmap = byte_span.append('0 ', tostring(gidmap), ' 1\n')
local gidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(gidmapfd):write_some(gidmap)

-- sync point #1
shost:send(ignored_buf)

shost:close()


An AF_UNIX+SOCK_SEQPACKET socket is used to coordinate the parent and the
child processes. This type of socket allows duplex communication between two
parties with builtin framing for messages, disconnection detection (process
reference counting if you will), and it also allows sending file descriptors
back-and-forth.

We also close sguest from the host side as soon as we’re done with it. This
will ensure any operation on shost will fail if the child process aborts for
any reason (i.e. no deadlocks happen here).



Even if it’s a sandbox, and root inside the sandbox doesn’t mean root outside
it, maybe you still want to drop all root privileges at the end of the
subprocess.init.script:


        C.cap_set_proc('=')


It won’t be particularly useful for most people, but that technique is still
useful to — for instance — create alternative LXC/FlatPak front-ends to run a
few programs (if the program can’t update its own binary files, new
possibilities for sandboxing practice open up).




Alternatively, one can fill the mapping indirectly. Below we show how to do it
using the suid-helper newuidmap:


        local init_script = [[
    local pidfd = C.open('/proc/self', C.O_RDONLY)
    send_with_fd(arg, '.', pidfd)

    -- sync point
    C.read(arg, 1)
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

spawn_vm{
    subprocess = {
        newns_user = true,
        init = { script = init_script, arg = sguest }
    }
}
sguest:close()
local ignored_buf = byte_span.new(1)
local pidfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]

system.spawn{
    program = 'newuidmap',
    stdout = 'share',
    stderr = 'share',
    arguments = {
        'newuidmap',
        'fd:3', '0', '100000', '1001'
    },
    extra_fds = {
        [3] = pidfd
    }
}:wait()

system.spawn{
    program = 'newgidmap',
    stdout = 'share',
    stderr = 'share',
    arguments = {
        'newgidmap',
        'fd:3', '0', '100000', '1001'
    },
    extra_fds = {
        [3] = pidfd
    }
}:wait()

-- sync point #1
shost:send(ignored_buf)

shost:close()




You need to configure /etc/subuid to have newuidmap working.






The network namespace

          Let’s start by isolating the network resources as that’s the easiest one:


        spawn_vm{ subprocess = {
    newns_user = true,
    newns_net = true
} }


The process will be created within a new network namespace where no interfaces
besides the loopback device exist. And even the loopback device will be down! If
you want to configure the loopback device so the process can at least bind
sockets to it you can use the program ip. However the program ip needs to
run within the new namespace. To spawn the program ip within the namespace of
the new actor you need to acquire the file descriptors to its namespaces. There
are two ways to do that. You can either use race-prone PID primitives (easy), or
you can use a handshake protocol to ensure that there are no races related to
PID dances. Below we show the race-free method.


        local init_script = [[
    local userns = C.open('/proc/self/ns/user', C.O_RDONLY)
    send_with_fd(arg, '.', userns)
    local netns = C.open('/proc/self/ns/net', C.O_RDONLY)
    send_with_fd(arg, '.', netns)

    -- sync point
    C.read(arg, 1)
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

spawn_vm{
    subprocess = {
        newns_user = true,
        newns_net = true,
        init = { script = init_script, arg = sguest }
    }
}
sguest:close()
local ignored_buf = byte_span.new(1)
local userns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
local netns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
system.spawn{
    program = 'ip',
    arguments = {'ip', 'link', 'set', 'dev', 'lo', 'up'},
    nsenter_user = userns,
    nsenter_net = netns
}:wait()
shost:close()




The PID namespace

          When a new PID namespace is created, the process inside the new namespace ceases
to see processes from the parent namespace. Your process still can see new
processes created in the child’s namespace, so invisibility only happens in one
direction. PID namespaces are hierarchically nested in parent-child
relationships.

The first process in a PID namespace is PID1 within that namespace. PID1 has a
few special responsibilities. After subprocess.init.script exits, the Emilua
runtime will fork if it’s running as PID1. This new child will assume the role
of starting your module (the Lua VM).


The controlling terminal


If you want to set up a pty in init.script, the PID1 will be the session
leader. That way, the actor running in PID2 wouldn’t accidentally acquire a new
ctty if it happens to open() a tty that isn’t currently controlling any
session.




If the PID1 dies, all processes from that namespace (including further
descendant PID namespaces) will be killed. This behavior allows you to fully
dispose of a container when no longer needed by sending SIGKILL to PID1. No
process will escape.

Communication topology may be arbitrarily defined as per the actor model, but
the processes always assume a topology of a tree (supervision trees), and no PID
namespace ever “re-parents”.

The Emilua runtime automatically sends SIGKILL to every process spawned using
the Linux namespaces API when the actor that spawned them exits. If you want
fine control over these processes, you can use a few extra methods that are
available to the channel object that represents them.



The mount namespace

          Let’s build up on our previous knowledge and build a sandbox with an empty "/"
(that’s right!).


        local init_script = [[
    ...

    -- unshare propagation events
    C.mount(nil, '/', nil, C.MS_PRIVATE)

    C.umask(0)
    C.mount(nil, '/mnt', 'tmpfs', 0)
    C.mkdir('/mnt/proc', mode(7, 5, 5))
    C.mount(nil, '/mnt/proc', 'proc', 0)
    C.mkdir('/mnt/tmp', mode(7, 7, 7))

    -- pivot root
    C.mkdir('/mnt/mnt', mode(7, 5, 5))
    C.chdir('/mnt')
    C.pivot_root('.', '/mnt/mnt')
    C.chroot('.')
    C.umount2('/mnt', C.MNT_DETACH)

    -- sync point
    C.read(arg, 1)
]]

spawn_vm{
    subprocess = {
        ...,
        newns_mount = true,

        -- let's go ahead and create a new
        -- PID namespace as well
        newns_pid = true
    }
}


We could certainly create a better initial "/". We could certainly do away
with a few of the lines by cleverly reordering them. However the example is
still nice to just illustrate a few of the syscalls exposed to the Lua
script. There’s nothing particularly hard about mount namespaces. We just call a
few syscalls, and no fd-dance between host and guest is really necessary.

One technique that we should mention is how module in spawn_vm(module) is
interpreted when you use Linux namespaces. This argument no longer means an
actual module when namespaces are involved. It’ll just be passed along to the
new process. The following snippet shows you how to actually get the new actor
in the container by finding a proper module to start.


        local guest_code = [[
    local inbox = require 'inbox'
    local ip = require 'ip'

    local ch = inbox:receive().dest
    ch:send(ip.host_name())
]]

local init_script = [[
    ...

    local modulefd = C.open(
        '/app.lua',
        bit.bor(C.O_WRONLY, C.O_CREAT),
        mode(6, 0, 0))
    send_with_fd(arg, '.', modulefd)
]]

local my_channel = spawn_vm{ module = '/app.lua', ... }

...

local module = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
module = file.stream.new(module)
stream.write_all(module, guest_code)
shost:close()

my_channel:send{ dest = inbox }
print(inbox:receive())




Full example

          
        local stream = require 'stream'
local system = require 'system'
local inbox = require 'inbox'
local file = require 'file'
local unix = require 'unix'

local guest_code = [[
    local inbox = require 'inbox'
    local ip = require 'ip'

    local ch = inbox:receive().dest
    ch:send(ip.host_name())
]]

local init_script = [[
    local uidmap = C.open('/proc/self/uid_map', C.O_WRONLY)
    send_with_fd(arg, '.', uidmap)
    C.write(C.open('/proc/self/setgroups', C.O_WRONLY), 'deny')
    local gidmap = C.open('/proc/self/gid_map', C.O_WRONLY)
    send_with_fd(arg, '.', gidmap)

    -- sync point #1 as tmpfs will fail on mkdir()
    -- with EOVERFLOW if no UID/GID mapping exists
    -- https://bugzilla.kernel.org/show_bug.cgi?id=183461
    C.read(arg, 1)

    local userns = C.open('/proc/self/ns/user', C.O_RDONLY)
    send_with_fd(arg, '.', userns)
    local netns = C.open('/proc/self/ns/net', C.O_RDONLY)
    send_with_fd(arg, '.', netns)

    -- unshare propagation events
    C.mount(nil, '/', nil, C.MS_PRIVATE)

    C.umask(0)
    C.mount(nil, '/mnt', 'tmpfs', 0)
    C.mkdir('/mnt/proc', mode(7, 5, 5))
    C.mount(nil, '/mnt/proc', 'proc', 0)
    C.mkdir('/mnt/tmp', mode(7, 7, 7))

    -- pivot root
    C.mkdir('/mnt/mnt', mode(7, 5, 5))
    C.chdir('/mnt')
    C.pivot_root('.', '/mnt/mnt')
    C.chroot('.')
    C.umount2('/mnt', C.MNT_DETACH)

    local modulefd = C.open(
        '/app.lua',
        bit.bor(C.O_WRONLY, C.O_CREAT),
        mode(6, 0, 0))
    send_with_fd(arg, '.', modulefd)

    -- sync point #2 as we must await for
    --
    -- * loopback net device
    -- * `/app.lua`
    --
    -- before we run the guest
    C.read(arg, 1)

    C.sethostname('mycoolhostname')
    C.setdomainname('mycooldomainname')

    -- drop all root privileges
    C.cap_set_proc('=')
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

local my_channel = spawn_vm{
    module = '/app.lua',
    subprocess = {
        newns_user = true,
        newns_net = true,
        newns_mount = true,
        newns_pid = true,
        newns_uts = true,
        newns_ipc = true,
        init = { script = init_script, arg = sguest }
    }
}
sguest:close()

local ignored_buf = byte_span.new(1)

local uidmap = ({system.getresuid()})[2]
uidmap = byte_span.append('0 ', tostring(uidmap), ' 1\n')
local uidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(uidmapfd):write_some(uidmap)

local gidmap = ({system.getresgid()})[2]
gidmap = byte_span.append('0 ', tostring(gidmap), ' 1\n')
local gidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(gidmapfd):write_some(gidmap)

-- sync point #1
shost:send(ignored_buf)

local userns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
local netns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
system.spawn{
    program = 'ip',
    arguments = {'ip', 'link', 'set', 'dev', 'lo', 'up'},
    nsenter_user = userns,
    nsenter_net = netns
}:wait()

local module = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
module = file.stream.new(module)
stream.write_all(module, guest_code)

-- sync point #2
shost:close()

my_channel:send{ dest = inbox }
print(inbox:receive())







C++ embedder API


        If you want to embed Emilua in your own Boost.Asio-based programs, this is the
list of steps you need to do:



	
Compile and link against Emilua (use Meson or pkg-config to have the
appropriate compiler flags filled automatically).


	
#include <emilua/state.hpp>


	
Instantiate emilua::app_context. This object needs to stay alive for as
long as at least one Lua VM is alive. If you want to be sure, just make sure
it outlives boost::asio::io_context and you’re good to go.


	
Make sure all asio::io_context objects store an option (asio::config) for
scheduler/concurrency_hint. Alternatively you may use
emilua::properties_service on older ASIO versions.


	
Call emilua::make_vm() (see src/main.ypp for an example).


	
Call emilua::vm_context::fiber_resume() inside the strand returned by
emilua::vm_context::strand() to start the Lua VM created in the previous
step (see src/main.ypp for an example).


	
Optionally synchronize against other threads before you exit the
application. If you’re going to spawn actors in foreign
boost::asio::io_context objects in your Lua programs then it’s a good idea
to include this step. See below.








Emilua is not designed to work properly with
boost::asio::io_context::stop(). Many cleanup steps will be missed if you call
this function. If you need to use it, then spawn Emilua programs in their own
boost::asio::io_context instances.





emilua::app_context

          This type stores process-wide info that is shared among all Lua VMs
(e.g. process arguments, environment, module paths, module caches, default
logger, which VM is the master VM, …​).

If you want to embed the Lua programs in your binary as well you can
pre-populate the module cache here with the contents of all Lua files you intend
to ship in the binary. modules_cache_registry is the member you’re looking
for. Do this before you start the first Lua VM. However there’s a better way
(see next section).



Builtin modules

          Just define some or all of the following 3 functions and your module name
resolution will be favoured over filesystem queries:



	
emilua::get_builtin_module


	
emilua::get_builtin_rdf_ec


	
emilua::get_builtin_native_module






Using this method instead of pre-filling the module cache allows actors spawned
in subprocesses to import these modules as well. This method may also lead to
better start-up times and a smaller memory footprint (you could even use gperf
to have the best module search performance).



Master VM

          If you want to allow your Lua programs to change process state that is shared
among all program threads (e.g. current working directory, signal handlers, …​)
then you need to elect one Lua VM to be the master VM.

The 1-one snippet that follows is enough to finish this setup. This step must be
done before you call fiber_resume().


        appctx.master_vm = vm_ctx;




Cleanup at exit

          First make sure emilua::app_context outlives boost::asio::io_context.

After boost::asio::io_context::run() returns you can use the following snippet
to synchronize against extra threads and boost::asio::io_context objects your
Lua scripts created[42].


        {
    std::unique_lock<std::mutex> lk{appctx.extra_threads_count_mtx};
    while (appctx.extra_threads_count > 0)
        appctx.extra_threads_count_empty_cond.wait(lk);
}




Actors spawned in different processes

          Emilua has the ability to spawn Lua VMs in their own processes for isolation or
sandboxing purposes. To enable this feature, a supervisor process must be
created while the program is still single-threaded.

For communication with the supervisor process, Emilua uses an UNIX socket. The
file descriptor for this process is stored in
app_context::ipc_actor_service_sockfd. See src/main.ypp for an example on
how to initialize this variable.

On Linux, you also need to initialize emilua::clone_stack_address.

If you don’t intend to have Lua VMs tied to their own processes triggered by Lua
programs then you can skip this step.



Inherited low-numbered file descriptors

          After file descriptors are allocated in the process table by some library, it’s
already too late detect whether some arbitrary file descriptor was inherited
from the parent process. If you’re planning to allow Lua-programs to take
control over these file descriptors (i.e. system.get_lowfd()), you must add
some logic at the program startup (before any new file descriptor is allocated)
to check which file descriptors were inherited and are allowed to be manipulated
from Lua programs and store them in the Emilua registry:


        std::array<bool, 7> lowfds;
lowfds.fill(false);

for (int fd = 3 ; fd <= 9 ; ++fd) {
    if (fcntl(fd, F_GETFD) != -1 || errno != EBADF) {
        lowfds[fd - 3] = true;
    }
}

// ...

emilua::app_context appctx;
appctx.lowfds = lowfds;




RT signals

          Emilua reserves a RT signal for internal uses (cancelling IO operations which
have poor system APIs). This signal can be configured at build time:


        meson configure -Deintr_rtsigno=RTSIGNO


If you choose the value 0, this support is disabled altogether and Emilua
won’t reserve any RT signal by itself. If this support is enabled, you must add
some code similar to the following one in main():


        struct sigaction sa;
std::memset(&sa, 0, sizeof(struct sigaction));

sigemptyset(&sa.sa_mask);
sigaddset(&sa.sa_mask, EMILUA_CONFIG_EINTR_RTSIGNO);
sigprocmask(SIG_BLOCK, &sa.sa_mask, /*oldset=*/NULL);

sa.sa_sigaction = emilua::longjmp_on_rtsigno;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigaction(EMILUA_CONFIG_EINTR_RTSIGNO, /*act=*/&sa, /*oldact=*/NULL);




libemilua-main

          If aren’t trying to embed Emilua into an existing application and just want to
create a single-binary application embedding the Lua sources it’ll be easier to
just use libemilua-main. It’s a ready to roll implementation for the function
main() with some hooks you may use to customize simple behavior.





Emilua only instantiates new threads and boost::asio::io_context objects if your Lua programs explicitly ask for that when it calls spawn_vm(). You can also disable this feature altogether at build time.









Reference


        




























































































































































generic_error


        
        local generic_error = require 'generic_error'

local my_error = generic_error.EINVAL
my_error.arg = 1
error(my_error)


An userdata for which the __index() metamethod returns a new error code from
the generic category on access.


Error list

          

	
EAFNOSUPPORT


	
EADDRINUSE


	
EADDRNOTAVAIL


	
EISCONN


	
E2BIG


	
EDOM


	
EFAULT


	
EBADF


	
EBADMSG


	
EPIPE


	
ECONNABORTED


	
EALREADY


	
ECONNREFUSED


	
ECONNRESET


	
EXDEV


	
EDESTADDRREQ


	
EBUSY


	
ENOTEMPTY


	
ENOEXEC


	
EEXIST


	
EFBIG


	
ENAMETOOLONG


	
ENOSYS


	
EHOSTUNREACH


	
EIDRM


	
EILSEQ


	
ENOTTY


	
EINTR


	
EINVAL


	
ESPIPE


	
EIO


	
EISDIR


	
EMSGSIZE


	
ENETDOWN


	
ENETRESET


	
ENETUNREACH


	
ENOBUFS


	
ECHILD


	
ENOLINK


	
ENOLCK


	
ENOMSG


	
ENOPROTOOPT


	
ENOSPC


	
ENXIO


	
ENODEV


	
ENOENT


	
ESRCH


	
ENOTDIR


	
ENOTSOCK


	
ENOTCONN


	
ENOMEM


	
ENOTSUP


	
ECANCELED


	
EINPROGRESS


	
EPERM


	
EOPNOTSUPP


	
EWOULDBLOCK


	
EOWNERDEAD


	
EACCES


	
EPROTO


	
EPROTONOSUPPORT


	
EROFS


	
EDEADLK


	
EAGAIN


	
ERANGE


	
ENOTRECOVERABLE


	
ETXTBSY


	
ETIMEDOUT


	
ENFILE


	
EMFILE


	
EMLINK


	
ELOOP


	
EOVERFLOW


	
EPROTOTYPE











asio_error


        
        local asio_error = require 'asio_error'

error(asio_error.misc.eof)


An userdata for which the __index() metamethod returns a new error code from
the asio category on access.


Error list

          
Basic errors

          These errors may be just an alias to common errors from the system category
depending on the host operating system.



	
basic.access_denied


	
basic.address_family_not_supported


	
basic.address_in_use


	
basic.already_connected


	
basic.already_started


	
basic.broken_pipe


	
basic.connection_aborted


	
basic.connection_refused


	
basic.connection_reset


	
basic.bad_descriptor


	
basic.fault


	
basic.host_unreachable


	
basic.in_progress


	
basic.interrupted


	
basic.invalid_argument


	
basic.message_size


	
basic.name_too_long


	
basic.network_down


	
basic.network_reset


	
basic.network_unreachable


	
basic.no_descriptors


	
basic.no_buffer_space


	
basic.no_memory


	
basic.no_permission


	
basic.no_protocol_option


	
basic.no_such_device


	
basic.not_connected


	
basic.not_socket


	
basic.operation_aborted


	
basic.operation_not_supported


	
basic.shut_down


	
basic.timed_out


	
basic.try_again


	
basic.would_block








netdb.h errors

          

	
netdb.host_not_found


	
netdb.host_not_found_try_again


	
netdb.no_data


	
netdb.no_recovery








addrinfo errors

          

	
addrinfo.service_not_found


	
addrinfo.socket_type_not_supported








Misc errors

          

	
misc.already_open


	
misc.eof


	
misc.not_found


	
misc.fd_set_failure












format


        
Synopsis

          
        format(fmt: string[, ...]) -> string




Description

          Formats args according to specifications in fmt and returns the result as a
string.

Supported arguments:



	
boolean


	
number


	
string






You may also specify pairs. First element must be a string and it works as a
named argument.

The full specification for the format string
can be found in libfmt homepage.



format() is a global so it doesn’t need to be require()d.






Example

          
        format("{0}, {1}, {2}", 'a', 'b', 'c')
-- Result: "a, b, c"

format("{}, {}, {}", 'a', 'b', 'c')
-- Result: "a, b, c"

format("{2}, {1}, {0}", 'a', 'b', 'c')
-- Result: "c, b, a"

format("{0}{1}{0}", "abra", "cad") -- arguments' indices can be repeated
-- Result: "abracadabra"

format("{:.{}f}", 3.14, 1)
-- Result: "3.1"

format("Elapsed time: {s:.2f} seconds", {"s", 1.23})
-- Result: "Elapsed time: 1.23 seconds"







byte_span


        

byte_span is a global so it doesn’t need to be require()d.




A span of bytes. In Emilua, they’re used as network buffers.


Plugin authors


This class is intended for network buffers in a proactor-based network API
(i.e. true asynchronous IO). A NIC could be writing to this memory region while
the program is running. This has the same effect of another thread writing to
the same memory region.

If you’re writing state machines, do not construct the state machine on top of
the memory region pointed by a byte_span. It’s not safe to store state here as
buggy Lua applications could mutate this area in a racy way. Only use the memory
region as the result of operations.

A future Emilua release could introduce read-write locks, but as of now I’m
unconvinced of their advantages here.




It’s modeled after
Golang’s
slices. However 1-indexed access is used.


Functions

          
new(length: integer[, capacity: integer]) → byte_span

          Constructor.

When the capacity argument is omitted, it defaults to the specified length.



with_zeros(length: integer[, capacity: integer]) → byte_span

          Constructor.

It initializes capacity bytes with zero (the NUL byte). If length and
capacity differ then it goes beyond the first length bytes to initialize the
whole memory region pointed to by the returned byte_span.

If length and capacity are equal, then it’s identical to
new(length):fill(0).



sub(self[, start: integer, end: integer]) → byte_span

          Returns a new byte_span that points to a slice of the same memory region.

The start and end indices are optional; they default to 1 and the
byte_span's length respectively.

We can grow a byte_span to its capacity by slicing it again.

Invalid ranges (e.g. start below 1, a byte_span running beyond its
capacity, negative indexes, …​) will raise EINVAL.



first(self, count: integer) → byte_span

          Returns a new byte_span that points to the first count bytes of the same
memory region.



last(self, count: integer) → byte_span

          Returns a new byte_span that points to the last count bytes of the same
memory region.



copy(self, src: byte_span|string) → integer

          Copy src into self.

Returns the number of elements copied.

Copying between slices of different lengths is supported (it’ll copy only up to
the smaller number of elements). In addition it can handle source and
destination spans that share the same underlying memory, handling overlapping
spans correctly.



append() → byte_span

          
        function append(self, ...: byte_span|string|nil) -> byte_span ①
function append(...: byte_span|string|nil) -> byte_span       ②


Returns a new byte_span by appending trailing arguments into self. If
self's capacity is enough to hold all data, the underlying memory is
modified in place. Otherwise the returned byte_span will point to newly
allocated memory[43].

For the second overload (non-member function), a new byte span is created from
scratch.



fill(self, byte: integer) → byte_span

          As in C’s memset(), it fills the memory area pointed to by self with byte.

Returns self.




Functions (string algorithms)

          These functions operate in terms of octets/bytes (kinda like an 8-bit ASCII) and
have no concept of UTF-8 encoding.


starts_with(self, prefix: string|byte_span) → boolean

          Returns whether self begins with prefix.



ends_with(self, suffix: string|byte_span) → boolean

          Returns whether self ends with suffix.



find(self, tgt: string|byte_span[, start: integer]) → integer|nil

          Finds the first substring equals to tgt and returns its index, or nil if not
found.



rfind(self, tgt: string|byte_span[, end_: integer]) → integer|nil

          Finds the last substring equals to tgt and returns its index, or nil if not
found.



find_first_of(self, strlist: string|byte_span[, start: integer]) → integer|nil

          Finds the first octet equals to any of the octets within strlist and returns
its index, or nil if not found.



find_last_of(self, strlist: string|byte_span[, end_: integer]) → integer|nil

          Finds the last octet equals to any of the octets within strlist and returns
its index, or nil if not found.



find_first_not_of(self, strlist: string|byte_span[, start: integer]) → integer|nil

          Finds the first octet not equals to any of the octets within strlist and
returns its index, or nil if not found.



find_last_not_of(self, strlist: string|byte_span[, end: integer]) → integer|nil

          Finds the last octet not equals to any of the octets within strlist and
returns its index, or nil if not found.



trimmed(self[, lws: string|byte_span = " \f\n\r\t\v"]) → byte_span

          Returns a slice from self that doesn’t start nor ends with any octet from
lws.



inplace_lower(self)

          Converts every upper ASCII character from self to its lower version.



inplace_upper(self)

          Converts every lower ASCII character from self to its upper version.




Functions (primitive types serialization)

          These functions operate in terms of bytes, and are endianness-aware. They throw
EINVAL if you use a byte_span of the wrong size. Data doesn’t need to be
aligned.


get_u16be(self) → integer

          Interpret self (must be 2 bytes long) as an unsigned 16-bit integer (big
endian order) and return the result.



get_u16le(self) → integer

          Interpret self (must be 2 bytes long) as an unsigned 16-bit integer (little
endian order) and return the result.



get_u24be(self) → integer

          Interpret self (must be 3 bytes long) as an unsigned 24-bit integer (big
endian order) and return the result.



get_u24le(self) → integer

          Interpret self (must be 3 bytes long) as an unsigned 24-bit integer (little
endian order) and return the result.



get_u32be(self) → integer

          Interpret self (must be 4 bytes long) as an unsigned 32-bit integer (big
endian order) and return the result.



get_u32le(self) → integer

          Interpret self (must be 4 bytes long) as an unsigned 32-bit integer (little
endian order) and return the result.



get_u40be(self) → integer

          Interpret self (must be 5 bytes long) as an unsigned 40-bit integer (big
endian order) and return the result.



get_u40le(self) → integer

          Interpret self (must be 5 bytes long) as an unsigned 40-bit integer (little
endian order) and return the result.



get_u48be(self) → integer

          Interpret self (must be 6 bytes long) as an unsigned 48-bit integer (big
endian order) and return the result.



get_u48le(self) → integer

          Interpret self (must be 6 bytes long) as an unsigned 48-bit integer (little
endian order) and return the result.



get_i8(self) → integer

          Interpret self (must be 1 byte long) as a signed 8-bit integer and return the
result.



get_u8() doesn’t exist as you can just index instead.






get_i16be(self) → integer

          Interpret self (must be 2 bytes long) as an signed 16-bit integer (big endian
order) and return the result.



get_i16le(self) → integer

          Interpret self (must be 2 bytes long) as an signed 16-bit integer (little
endian order) and return the result.



get_i24be(self) → integer

          Interpret self (must be 3 bytes long) as an signed 24-bit integer (big endian
order) and return the result.



get_i24le(self) → integer

          Interpret self (must be 3 bytes long) as an signed 24-bit integer (little
endian order) and return the result.



get_i32be(self) → integer

          Interpret self (must be 4 bytes long) as an signed 32-bit integer (big endian
order) and return the result.



get_i32le(self) → integer

          Interpret self (must be 4 bytes long) as an signed 32-bit integer (little
endian order) and return the result.



get_i40be(self) → integer

          Interpret self (must be 5 bytes long) as an signed 40-bit integer (big endian
order) and return the result.



get_i40le(self) → integer

          Interpret self (must be 5 bytes long) as an signed 40-bit integer (little
endian order) and return the result.



get_i48be(self) → integer

          Interpret self (must be 6 bytes long) as an signed 48-bit integer (big endian
order) and return the result.



get_i48le(self) → integer

          Interpret self (must be 6 bytes long) as an signed 48-bit integer (little
endian order) and return the result.



get_f32be(self) → number

          Interpret self (must be 4 bytes long) as a 32-bit floating point number (big
endian order) and return the result.



get_f32le(self) → number

          Interpret self (must be 4 bytes long) as a 32-bit floating point number
(little endian order) and return the result.



get_f64be(self) → number

          Interpret self (must be 8 bytes long) as a 64-bit floating point number (big
endian order) and return the result.



get_f64le(self) → number

          Interpret self (must be 8 bytes long) as a 64-bit floating point number
(little endian order) and return the result.



set_u16be(self, n: integer)

          Set the stored byte sequence (must be 2 bytes long) to represent the unsigned
16-bit integer (big endian order) n.



set_u16le(self, n: integer)

          Set the stored byte sequence (must be 2 bytes long) to represent the unsigned
16-bit integer (little endian order) n.



set_u24be(self, n: integer)

          Set the stored byte sequence (must be 3 bytes long) to represent the unsigned
24-bit integer (big endian order) n.



set_u24le(self, n: integer)

          Set the stored byte sequence (must be 3 bytes long) to represent the unsigned
24-bit integer (little endian order) n.



set_u32be(self, n: integer)

          Set the stored byte sequence (must be 4 bytes long) to represent the unsigned
32-bit integer (big endian order) n.



set_u32le(self, n: integer)

          Set the stored byte sequence (must be 4 bytes long) to represent the unsigned
32-bit integer (little endian order) n.



set_u40be(self, n: integer)

          Set the stored byte sequence (must be 5 bytes long) to represent the unsigned
40-bit integer (big endian order) n.



set_u40le(self, n: integer)

          Set the stored byte sequence (must be 5 bytes long) to represent the unsigned
40-bit integer (little endian order) n.



set_u48be(self, n: integer)

          Set the stored byte sequence (must be 6 bytes long) to represent the unsigned
48-bit integer (big endian order) n.



set_u48le(self, n: integer)

          Set the stored byte sequence (must be 6 bytes long) to represent the unsigned
48-bit integer (little endian order) n.



set_i8(self, n: integer)

          Set the stored byte sequence (must be 1 bytes long) to represent the signed byte
n.



set_u8() doesn’t exist as you can just index instead.






set_i16be(self, n: integer)

          Set the stored byte sequence (must be 2 bytes long) to represent the signed
16-bit integer (big endian order) n.



set_i16le(self, n: integer)

          Set the stored byte sequence (must be 2 bytes long) to represent the signed
16-bit integer (little endian order) n.



set_i24be(self, n: integer)

          Set the stored byte sequence (must be 3 bytes long) to represent the signed
24-bit integer (big endian order) n.



set_i24le(self, n: integer)

          Set the stored byte sequence (must be 3 bytes long) to represent the signed
24-bit integer (little endian order) n.



set_i32be(self, n: integer)

          Set the stored byte sequence (must be 4 bytes long) to represent the signed
32-bit integer (big endian order) n.



set_i32le(self, n: integer)

          Set the stored byte sequence (must be 4 bytes long) to represent the signed
32-bit integer (little endian order) n.



set_i40be(self, n: integer)

          Set the stored byte sequence (must be 5 bytes long) to represent the signed
40-bit integer (big endian order) n.



set_i40le(self, n: integer)

          Set the stored byte sequence (must be 5 bytes long) to represent the signed
40-bit integer (little endian order) n.



set_i48be(self, n: integer)

          Set the stored byte sequence (must be 6 bytes long) to represent the signed
48-bit integer (big endian order) n.



set_i48le(self, n: integer)

          Set the stored byte sequence (must be 6 bytes long) to represent the signed
48-bit integer (little endian order) n.



set_f32be(self, n: number)

          Set the stored byte sequence (must be 4 bytes long) to represent the 32-bit
floating point number (big endian order) n.



set_f32le(self, n: number)

          Set the stored byte sequence (must be 4 bytes long) to represent the 32-bit
floating point number (little endian order) n.



set_f64be(self, n: number)

          Set the stored byte sequence (must be 8 bytes long) to represent the 64-bit
floating point number (big endian order) n.



set_f64le(self, n: number)

          Set the stored byte sequence (must be 8 bytes long) to represent the 64-bit
floating point number (little endian order) n.




Properties

          
capacity: integer

          The capacity.




Metamethods

          

	
__tostring()


	
__len()


	
__index()


	
__newindex()


	
__eq()








You can index the spans by numerical valued keys and the numerical (ASCII)
value for the underlying byte will be returned (or assigned on __newindex()).








Allocation strategy (the new byte_span's capacity) is left unspecified and may change among Emilua releases.









condition_variable


        
        local condition_variable = require('condition_variable')

local function queue_consumer()
    scope(function()
        scope_cleanup_push(function() queue_mtx:unlock() end)
        queue_mtx:lock()
        while #queue == 0 do
            queue_cond:wait(queue_mtx)
        end
        for _, e in ipairs(queue) do
            consume_item(e)
        end
        queue = {}
    end)
end


A condition variable.


Functions

          
new() → condition_variable

          Constructor.



wait(self, m: mutex)

          Read pthread_cond_wait()

wait() is a cancellation point. Prior to the delivery of the cancellation
request, the underlying mutex is re-acquired under the hood.



notify_all(self)

          Read pthread_cond_broadcast().



notify_one(self)

          Read pthread_cond_signal().




Notifying without a lock

          If the condition variable, the notifier fiber and the waiting fiber all run in
the same thread (and cooperative multitasking is used instead preemptive
multitasking), then there is enough level of determinism to lift one restriction
that exists in traditional condition variables.



Even if the shared variable is atomic, it must be modified under the mutex in
order to correctly publish the modification to the waiting thread.

~ https://en.cppreference.com/w/cpp/thread/condition_variable




The reason why this restriction on the notifier fiber/thread exists is to avoid
a race. Consider the following waiter fiber and the notifier fiber:


        local function consumer()
    scope(function()
        scope_cleanup_push(function() m:unlock() end)
        m:lock()
        while not ready do
            c:wait(m)
        end

        -- ...
    end)
end

local function producer()
    ready = true
    c:notify_one()
end


Pay attention to the points when the waiter fiber checks if the event has been
signalled by testing ready and the instant it blocks on c.wait(). If the
notifier fiber mutates the shared variable and calls c.notify_one() between
these two points, then the signalization is lost. c.notify_one() would be
called by the time there would be no fiber blocked on c.wait(). That’s why the
notifier fiber need to mutate the shared variable through a mutex.

In Emilua, this restriction doesn’t apply (as long as there are no suspension
points between the time the waiting fiber tests the condition and calls
c.wait()) and the notifier fiber can mutate the shared variable without
holding a lock on the mutex. In this case, the condition variable essentially
becomes a non-suspending way (post semantics) to unpark a parked fiber (yes,
I’ve exploited this property in the past to avoid a few round-trips).






filesystem.path


        Objects of this class abstract path-manipulation algorithms for the host
operating system.

Methods from this class are purely computational and never trigger any
syscall. They only operate on the in-memory representation of a path. They do
not perform any operation on the filesytem. They do not initiate any I/O
request.

Paths are immutable. Any operation on a path will return a new path with the
result.


Functions

          
new() → path

          
        new()    ①
new(str) ②




	① Default constructor.

	② Create a path from an UTF-8 encoded string (in the host system format).







from_generic(source: string) → path

          Creates a path from the generic non-native format.



to_generic(self) → string

          Returns the path in the generic format encoded in UTF-8.



iterator(self) → function

          Returns an iterator to the path components (as strings). The iteration order
follows:



	
The root name, if any.


	
The root directory, if any.


	
The sequence of file names, omitting directory separators.


	
If there is a directory separator after the last file name in the path, the
last element is an empty element.








make_preferred(self) → path

          Returns a new path where all directory separators are converted to the preferred
directory separator.



On Windows, where "\" is the preferred separator, the path "foo/bar"
will be converted to "foo\bar".






remove_filename(self) → path

          Returns a new path where the filename component is removed.



replace_filename(self, replacement: string|path) → path

          Returns a new path where the filename component is replaced.



replace_extension(self[, replacement: string|path]) → path

          Returns a new path where the extension is replaced (or removed on nil).



lexically_normal(self) → path

          Returns a new path converted to normal form.



lexically_relative(self, base: string|path) → path

          Returns a new path where self is made relative to base.



lexically_proximate(self, base: string|path) → path

          Same as above if the return is non empty. Same as self, otherwise.




Properties

          
root_name: string

          Returns the root name, or an empty path.



root_directory: string

          Returns the root directory, or an empty path.



root_path: path

          Returns path.new(root_name) / root_directory.



relative_path: path

          Returns path relative to root_path.



parent_path: path

          Returns the path to the parent directory.



filename: string

          Returns filename component.



stem: string

          Returns filename component stripped of its extension.



extension: string

          Returns the extension of the filename component.



empty: boolean

          Whether the path is empty.



has_root_path: boolean

          Whether the root path is non-empty.



has_root_name: boolean

          Whether the root name is non-empty.



has_root_directory: boolean

          Whether the root directory is non-empty.



has_relative_path: boolean

          Whether relative path is non-empty.



has_parent_path: boolean

          Whether the parent path is non-empty.



has_filename: boolean

          Whether the filename is non-empty.



has_stem: boolean

          Whether the stem is non-empty.



has_extension: boolean

          Whether the extension is non-empty.



is_absolute: boolean

          Whether the path is absolute.



is_relative: boolean

          Whether the path is relative.




Metamethods

          

	
__tostring(): Encodes the native representation as UTF-8 and returns it.


	
__eq(): Compares two paths lexicographically.


	
__lt(): Compares two paths lexicographically.


	
__le(): Compares two paths lexicographically.


	
__div(): Concatenates two paths with a directory separator.


	
__concat(): Concatenates the underlying native representation of the paths
(i.e. no additional directory separators are introduced). This operation may
not be portable between operating systems.








Module attributes

          
preferred_separator: string

          The preferred directory separator on the host operating system encoded in UTF-8.







filesystem.mode


        
Synopsis

          
        local fs = require "filesystem"

fs.mode(user: integer, group: integer, other: integer) -> integer ①
fs.mode("set_uid"|"set_gid"|"sticky_bit") -> integer ②




Description

          A helper function to create POSIX mode permission bits.

The implementation for overload #1 is:


        function mode(user: integer, group: integer, other: integer) -> integer
    return bit.bor(bit.lshift(user, 6), bit.lshift(group, 3), other)
end


The meaning for overload #2’s parameters:



	
"set_uid"


	
S_ISUID


	
"set_gid"


	
S_ISGID


	
"sticky_bit"


	
S_ISVTX











filesystem.directory_entry


        The object returned by directory iterators. Objects of this class cannot be
created directly.


Functions

          
refresh(self)

          Updates the cached file attributes.




Properties

          
path: filesystem.path

          The path the entry refers to.



file_size: integer

          The size in bytes of the file to which the directory entry refers to.



hardlink_count: integer

          The number of hard links referring to the file to which the directory entry
refers to.



last_write_time: filesystem.clock.time_point

          The time of the last data modification of the file to which the directory entry
refers to.



status

          Returns the same value as filesystem.status().



symlink_status

          Returns the same value as filesystem.symlink_status().







filesystem.directory_iterator


        
Synopsis

          
        local fs = require "filesystem"
fs.directory_iterator(p: fs.path[, opts: table]) -> function




Description

          Returns an iterator function that, each time it is called, returns a
filesystem.directory_entry object for an element of the directory p.



opts

          

	
skip_permission_denied: boolean = false


	
On true, an EPERM will not be reported. Instead, an iterator to an empty
collection will be returned.











filesystem.recursive_directory_iterator


        
Synopsis

          
        local fs = require "filesystem"
fs.recursive_directory_iterator(p: fs.path[, opts: table]) -> function, handle




Description

          Returns an iterator function, and a handle to control iteration.

Each time the iterator is called, returns a filesystem.directory_entry object
for an element of the directory p (and, recursively, over the entries of all
of its subdirectories), and the current recursion depth (an integer).



opts

          

	
skip_permission_denied: boolean = false


	
Whether to skip directories that would otherwise result in EPERM.


	
follow_directory_symlink: boolean = false


	
Whether to follow directory symlinks.








Wrapping the iterator to skip over CVS files.

          Some programs such as rsync have command line options such as --cvs-exclude
that skip over unwanted files for the directory traversal. Such patterns can be
easily abstracted on top of recursive_directory_iterator. Here’s the
implementation for a function that does just that:


        function cvs_exclude(iter, ctrl)
    local function next()
        local entry, depth = iter()
        if entry == nil then
            return
        end

        local p = entry.path.filename
        if p == ".git" or p == ".svn" or p == ".hg" then
            ctrl:disable_recursion_pending()
        end
        return entry, depth
    end
    return next, ctrl
end




The same trick can be used to create functions to perform shell globbing.






handle functions

          
pop(self)

          Moves the iterator one level up in the directory hierarchy.



disable_recursion_pending(self)

          Disables recursion until the next increment.




handle properties

          
recursion_pending: boolean

          Whether the recursion is disabled for the current directory.




Example

          
        local fs = require "filesystem"

for entry, depth in fs.recursive_directory_iterator(fs.path.new(".")) do
    print(string.rep("\t", depth) .. entry.path.filename)
end







filesystem.absolute


        
Synopsis

          
        local fs = require "filesystem"
fs.absolute(p: fs.path) -> fs.path




Description

          Returns a path referencing the same file system location as p, for which
filesystem.path.is_absolute is true.






filesystem.canonical


        
Synopsis

          
        local fs = require "filesystem"
fs.canonical(p: fs.path) -> fs.path




Description

          Returns a canonical absolute path referencing the same file system location as
p.






filesystem.weakly_canonical


        
Synopsis

          
        local fs = require "filesystem"
fs.weakly_canonical(p: fs.path) -> fs.path




Description

          Returns a path in normal form referencing the same file system location as p.






filesystem.relative


        
Synopsis

          
        local fs = require "filesystem"
fs.relative(p: fs.path, base: fs.path = fs.current_working_directory()) -> fs.path




Description

          See https://en.cppreference.com/w/cpp/filesystem/relative.






filesystem.proximate


        
Synopsis

          
        local fs = require "filesystem"
fs.proximate(p: fs.path, base: fs.path = fs.current_working_directory()) -> fs.path




Description

          See https://en.cppreference.com/w/cpp/filesystem/relative.






filesystem.current_working_directory


        
Synopsis

          
        local fs = require "filesystem"
fs.current_working_directory() -> fs.path ①
fs.current_working_directory(p: fs.path|file_descriptor) ②




	① Get the current working directory.

	② Set the current working directory.







Description

          Get or set the current working directory for the calling process.



Only the master VM is allowed to change the current working directory.









filesystem.chroot


        
Synopsis

          
        local fs = require "filesystem"
fs.chroot(p: fs.path)




Description

          Set the root directory for the calling process.



Only the master VM is allowed to change the root directory.









filesystem.copy


        
Synopsis

          
        local fs = require "filesystem"
fs.copy(from: fs.path, to: fs.path[, opts: table])




Description

          See https://en.cppreference.com/w/cpp/filesystem/copy.



opts

          

	
existing: "skip"|"overwrite"|"update"|nil


	
Behavior when the file already exists.


	
nil


	
Report an error.


	
"skip"


	
Keep the existing file, without reporting an error.


	
"overwrite"


	
Replace the existing file.


	
"update"


	
Replace the existing file only if it is older than the file being copied.








	
recursive: boolean = false


	


	
false


	
Skip subdirectories.


	
true


	
Recursively copy subdirectories and their content.








	
symlinks: "copy"|"skip"|nil


	


	
nil


	
Follow symlinks.


	
"copy"


	
Copy symlinks as symlinks, not as the files they point to.


	
"skip"


	
Ignore symlinks.








	
copy: "directories_only"|"create_symlinks"|"create_hardlinks"|nil


	


	
nil


	
Copy file content.


	
"directories_only"


	
Copy the directory structure, but do not copy any non-directory files.


	
"create_symlinks"


	
Instead of creating copies of files, create symlinks pointing to the originals.


	
"create_hardlinks"


	
Instead of creating copies of files, create hardlinks that resolve to the same
files as the originals.

















filesystem.copy_file


        
Synopsis

          
        local fs = require "filesystem"
fs.copy_file(from: fs.path, to: fs.path[, on_existing: "skip"|"overwrite"|"update"]) -> boolean




Description

          See https://en.cppreference.com/w/cpp/filesystem/copy_file.



on_existing

          Behavior when the file already exists.



	
nil


	
Report an error.


	
"skip"


	
Keep the existing file, without reporting an error.


	
"overwrite"


	
Replace the existing file.


	
"update"


	
Replace the existing file only if it is older than the file being copied.











filesystem.copy_symlink


        
Synopsis

          
        local fs = require "filesystem"
fs.copy_symlink(from: fs.path, to: fs.path)




Description

          See https://en.cppreference.com/w/cpp/filesystem/copy_symlink.






filesystem.create_directory


        
Synopsis

          
        local fs = require "filesystem"
fs.create_directory(p: fs.path[, existing_p: fs.path]) -> boolean
fs.create_directories(p: fs.path) -> boolean




Description

          Creates the directory p as if by POSIX mkdir() with a second argument of
0777. If the function fails because p resolves to an existing directory, no
error is reported.

If existing_p is given, then the attributes of the new directory are copied
from existing_p.

filesystem.create_directories() calls filesystem.create_directory() for
every element of p that does not already exist.

Returns whether a directory was created for the directory p resolves to.



See also

          

	
filesystem.mkdir(3em)











filesystem.open


        
Synopsis

          
        local fs = require "filesystem"
fs.open(path: fs.path, flags: string[][, mode: integer]) -> file_descriptor




Description

          Open the file using the specified path.

The implementation for this function always include the flag O_NOCTTY behind
the scenes.

flags may contain:



	
"append"


	
Open the file in append mode.


	
"create"


	
Create the file if it does not exist.


Requires the mode argument. Example: fs.mode(7, 7, 7).






	
"directory"


	
Fail if path resolves to a non-directory file.


	
"exclusive"


	
Ensure a new file is created. Must be combined with create.


	
"no_follow"


	
Fail if path resolves to a symbolic link.


	
"path"


	
Get a stable reference to an inode without actually opening the
contents.


	
"read_only"


	
Open the file for reading.


	
"read_write"


	
Open the file for reading and writing.


	
"sync_all_on_write"


	
Open the file so that write operations automatically
synchronise the file data and metadata to disk
(FILE_FLAG_WRITE_THROUGH/O_SYNC).


	
"temporary"


	
Create an unnamed temporary regular file.


Requires the mode argument. Example: fs.mode(7, 7, 7).






	
"truncate"


	
Open the file with any existing contents truncated.


	
"write_only"


	
Open the file for writing.








Not available on Windows.






See also

          

	
file.stream(3em)











filesystem.mkdir


        
Synopsis

          
        local fs = require "filesystem"
fs.mkdir(p: fs.path, mode: integer)




Description

          See mkdir(3).



Not available on Windows.






See also

          

	
filesystem.create_directory(3em)











filesystem.create_hardlink


        
Synopsis

          
        local fs = require "filesystem"
fs.create_hardlink(target: fs.path, link: fs.path)




Description

          See https://en.cppreference.com/w/cpp/filesystem/create_hard_link.






filesystem.create_symlink


        
Synopsis

          
        local fs = require "filesystem"
fs.create_symlink(target: fs.path, link: fs.path)
fs.create_directory_symlink(target: fs.path, link: fs.path)




Description

          See https://en.cppreference.com/w/cpp/filesystem/create_symlink.






filesystem.mkfifo


        
Synopsis

          
        local fs = require "filesystem"
fs.mkfifo(p: fs.path, mode: integer)




Description

          See mkfifo(3).






filesystem.mknod


        
Synopsis

          
        local fs = require "filesystem"
fs.mknod(p: fs.path, mode: integer, dev: integer[, type: "character"|"block"])




Description

          See mknod(3).

If type is provided, S_IFCHR or S_IFBLK is OR’ed into mode.






filesystem.makedev


        
Synopsis

          
        local fs = require "filesystem"
fs.makedev(major: integer, minor: integer) -> integer




Description

          See makedev(3).






filesystem.dev_major


        
Synopsis

          
        local fs = require "filesystem"
fs.dev_major(dev: integer) -> integer




Description

          See makedev(3).






filesystem.dev_minor


        
Synopsis

          
        local fs = require "filesystem"
fs.dev_minor(dev: integer) -> integer




Description

          See makedev(3).






filesystem.equivalent


        
Synopsis

          
        local fs = require "filesystem"
fs.equivalent(p1: fs.path, p2: fs.path) -> boolean




Description

          See https://en.cppreference.com/w/cpp/filesystem/equivalent.






filesystem.file_size


        
Synopsis

          
        local fs = require "filesystem"
fs.file_size(p: fs.path) -> integer




Description

          For a regular file p, returns its size in bytes.






filesystem.hardlink_count


        
Synopsis

          
        local fs = require "filesystem"
fs.hardlink_count(p: fs.path) -> integer




Description

          Returns the number of hard links for the filesystem object identified by path
p.






filesystem.clock


        
        local clock = require('filesystem').clock


A clock to represent file time. Its epoch is unspecified.


Functions

          
now() → clock.time_point

          Returns a new time point representing the current value of the clock.



epoch() → clock.time_point

          Returns a new time point representing the epoch of the clock.



unix_epoch() → clock.time_point

          Returns a new time point representing 00:00:00 Coordinated Universal Time (UTC),
Thursday, 1 January 1970.



from_system(tp: time.system_clock.time_point) → clock.time_point

          Converts tp to a clock.time_point representing the same point in time.




time_point functions

          
add(self, secs: number)

          Modifies the time point by the given duration.



When the duration is converted to the native tick representation of the
clock, it’ll be rounded to the nearest time point rounding to even in halfway
cases.






sub(self, secs: number)

          Modifies the time point by the given duration.



When the duration is converted to the native tick representation of the
clock, it’ll be rounded to the nearest time point rounding to even in halfway
cases.






to_system(self) → time.system_clock.time_point

          Converts self to a time.system_clock.time_point representing the same point in
time.




time_point properties

          
seconds_since_epoch: number

          The number of elapsed seconds since the clock’s epoch.



seconds_since_unix_epoch: number

          The number of elapsed seconds since 00:00:00 Coordinated Universal Time (UTC),
Thursday, 1 January 1970.




time_point metamethods

          

	
__add()


	
__sub()


	
__eq()


	
__lt()


	
__le()











filesystem.last_write_time


        
Synopsis

          
        local fs = require "filesystem"
fs.last_write_time(p: fs.path) -> fs.clock.time_point ①
fs.last_write_time(p: fs.path, tp: fs.clock.time_point) ②




	① Get last write time.

	② Set last write time.







Description

          Get or set the time of the last modification of p.



Symlinks are followed.






It is not guaranteed that immediately after setting the write time, the
value returned by (1) is the same as what was passed as the argument to (2)
because the file system’s time may be more granular than
filesystem.clock.time_point.









filesystem.chown


        
Synopsis

          
        local fs = require "filesystem"
fs.chown(p: fs.path, owner: integer, group: integer)
fs.lchown(p: fs.path, owner: integer, group: integer)




Description

          Changes POSIX owner and group of the file to which p resolves.

If the owner or group is specified as -1, then that ID is not changed.






filesystem.chmod


        
Synopsis

          
        local fs = require "filesystem"
fs.chmod(p: fs.path, mode: integer)
fs.lchmod(p: fs.path, mode: integer)




Description

          Changes POSIX access permissions of the file to which p resolves.






filesystem.read_symlink


        
Synopsis

          
        local fs = require "filesystem"
fs.read_symlink(p: fs.path) -> fs.path




Description

          Returns a new path which refers to the target of the symbolic link.






filesystem.remove


        
Synopsis

          
        local fs = require "filesystem"
fs.remove(p: fs.path) -> boolean
fs.remove_all(p: fs.path) -> integer




Description

          See https://en.cppreference.com/w/cpp/filesystem/remove.






filesystem.rename


        
Synopsis

          
        local fs = require "filesystem"
fs.rename(old_p: fs.path, new_p: fs.path)




Description

          See https://en.cppreference.com/w/cpp/filesystem/rename.






filesystem.resize_file


        
Synopsis

          
        local fs = require "filesystem"
fs.resize_file(p: fs.path, new_size: integer)




Description

          See https://en.cppreference.com/w/cpp/filesystem/resize_file.






filesystem.is_empty


        
Synopsis

          
        local fs = require "filesystem"
fs.is_empty(p: fs.path) -> boolean




Description

          Checks whether the given path refers to an empty file or directory.






filesystem.exists


        
Synopsis

          
        local fs = require "filesystem"
fs.exists(p: fs.path) -> boolean




Description

          Checks whether the given path refers to an existing file or directory.






filesystem.is_block_device


        
Synopsis

          
        local fs = require "filesystem"
fs.is_block_device(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a block special file.






filesystem.is_character_device


        
Synopsis

          
        local fs = require "filesystem"
fs.is_character_device(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a character special file.






filesystem.is_directory


        
Synopsis

          
        local fs = require "filesystem"
fs.is_directory(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a directory.






filesystem.is_fifo


        
Synopsis

          
        local fs = require "filesystem"
fs.is_fifo(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a FIFO or pipe file.






filesystem.is_other


        
Synopsis

          
        local fs = require "filesystem"
fs.is_other(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a file of type other type. That is, the
file exists, but is neither regular file, nor directory nor a symlink.






filesystem.is_regular_file


        
Synopsis

          
        local fs = require "filesystem"
fs.is_regular_file(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a regular file.






filesystem.is_socket


        
Synopsis

          
        local fs = require "filesystem"
fs.is_socket(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a named IPC socket.






filesystem.is_symlink


        
Synopsis

          
        local fs = require "filesystem"
fs.is_symlink(p: fs.path) -> boolean




Description

          Checks whether the given path refers to a symbolic link.






filesystem.space


        
Synopsis

          
        local fs = require "filesystem"
fs.space(p: fs.path) -> { capacity: integer, free: integer, available: integer }




Description

          Determines the information about the filesystem on which the pathname p is
located.



Bytes are used for the units.









filesystem.status


        
Synopsis

          
        local fs = require "filesystem"
fs.status(p: fs.path) -> { type: string, mode: integer|"unknown" }
fs.symlink_status(p: fs.path) -> { type: string, mode: integer|"unknown" }




Description

          See https://en.cppreference.com/w/cpp/filesystem/status.

The acceptable strings for the member named type in the returned object are:



	
"not_found"


	
"regular"


	
"directory"


	
"symlink"


	
"block"


	
"character"


	
"fifo"


	
"socket"


	
"junction" (Windows-only)


	
"unknown"






The member named mode in the returned object refers to the POSIX file access
mode (permissions).






filesystem.temp_directory_path


        
Synopsis

          
        local fs = require "filesystem"
fs.temp_directory_path() -> fs.path




Description

          Returns the directory location suitable for temporary files.






filesystem.umask


        
Synopsis

          
        local fs = require "filesystem"
fs.umask(mask: integer) -> integer




Description

          Sets the file mode creation mask (umask) of the calling process to mask &
0777.

Returns the old mask.



Only the master VM is allowed to use this function.









filesystem.cap_get_file


        
Synopsis

          
        local fs = require "filesystem"
fs.cap_get_file(path: fs.path) -> system.linux_capabilities




Description

          See cap_get_file(3).






filesystem.cap_set_file


        
Synopsis

          
        local fs = require "filesystem"
fs.cap_set_file(path: fs.path, caps: system.linux_capabilities)




Description

          See cap_set_file(3).






file.random_access


        
Functions

          
new() → file.random_access

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into a file.random_access object.







open(self, path: filesystem.path, flags: string[])

          Open the file using the specified path.

flags may contain:



	
"append"


	
Open the file in append mode.


	
"create"


	
Create the file if it does not exist.


	
"exclusive"


	
Ensure a new file is created. Must be combined with create.


	
"read_only"


	
Open the file for reading.


	
"read_write"


	
Open the file for reading and writing.


	
"sync_all_on_write"


	
Open the file so that write operations automatically
synchronise the file data and metadata to disk
(FILE_FLAG_WRITE_THROUGH/O_SYNC).


	
"truncate"


	
Open the file with any existing contents truncated.


	
"write_only"


	
Open the file for writing.








close(self)

          Close the file.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous read or write operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.







cancel(self)

          Cancel all asynchronous operations associated with the file.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read and write operations to
finish immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native file to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read and write operations to
finish immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native file is
then transferred to the caller.







resize(self, n: integer)

          Alter the size of the file.

This function resizes the file to the specified size, in bytes. If the current
file size exceeds n then any extra data is discarded. If the current size is
less than n then the file is extended and filled with zeroes



lock(self)

          Acquires an exclusive advisory lock on the file.

See flock(2).



Not available on Windows.






lock_shared(self)

          Acquires a shared advisory lock on the file.

See flock(2).



Not available on Windows.






try_lock(self) → boolean

          Tries to acquire an exclusive advisory lock on the file. Returns whether lock
acquisition was successful.

See flock(2).



The current fiber is never suspended.






Not available on Windows.






try_lock_shared(self) → boolean

          Tries to acquire a shared advisory lock on the file. Returns whether lock
acquisition was successful.

See flock(2).



The current fiber is never suspended.






Not available on Windows.






unlock(self)

          Releases an existing advisory lock on the file held by this process.

See flock(2).



The current fiber is never suspended.






Not available on Windows.






read_some_at(self, offset: integer, buffer: byte_span) → integer

          Read data from the file at the specified offset and blocks current fiber until
it completes or errs.

Returns the number of bytes read.



Lua conventions on index starting at 1 are ignored. Indexes here
are OS-mandated and start at 0.






write_some_at(self, offset: integer, buffer: byte_span) → integer

          Write data to the file at the specified and blocks current fiber until it
completes or errs.

Returns the number of bytes written.



Lua conventions on index starting at 1 are ignored. Indexes here
are OS-mandated and start at 0.







Properties

          
is_open: boolean

          Whether the file is open.



size: integer

          The size of the file.







file.stream


        
Functions

          
new() → file.stream

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into a file.stream object.







open(self, path: filesystem.path, flags: string[])

          Open the file using the specified path.

flags may contain:



	
"append"


	
Open the file in append mode.


	
"create"


	
Create the file if it does not exist.


	
"exclusive"


	
Ensure a new file is created. Must be combined with create.


	
"read_only"


	
Open the file for reading.


	
"read_write"


	
Open the file for reading and writing.


	
"sync_all_on_write"


	
Open the file so that write operations automatically
synchronise the file data and metadata to disk
(FILE_FLAG_WRITE_THROUGH/O_SYNC).


	
"truncate"


	
Open the file with any existing contents truncated.


	
"write_only"


	
Open the file for writing.








close(self)

          Close the file.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous read or write operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.







cancel(self)

          Cancel all asynchronous operations associated with the file.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read and write operations to
finish immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native file to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read and write operations to
finish immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native file is
then transferred to the caller.







resize(self, n: integer)

          Alter the size of the file.

This function resizes the file to the specified size, in bytes. If the current
file size exceeds n then any extra data is discarded. If the current size is
less than n then the file is extended and filled with zeroes



seek(self, offset: integer, whence: string) → integer

          Sets and gets the file position, measured from the beginning of the file, to the
position given by offset plus a base specified by the string whence, as
follows:



	
"set"


	
Seek to an absolute position.


	
"cur"


	
Seek to an offset relative to the current file position.


	
"end"


	
Seek to an offset relative to the end of the file.






Returns the final file position, measured in bytes from the beginning of the
file.



Lua conventions on index starting at 1 are ignored. Indexes here
are OS-mandated and start at 0.






lock(self)

          Acquires an exclusive advisory lock on the file.

See flock(2).



Not available on Windows.






lock_shared(self)

          Acquires a shared advisory lock on the file.

See flock(2).



Not available on Windows.






try_lock(self) → boolean

          Tries to acquire an exclusive advisory lock on the file. Returns whether lock
acquisition was successful.

See flock(2).



The current fiber is never suspended.






Not available on Windows.






try_lock_shared(self) → boolean

          Tries to acquire a shared advisory lock on the file. Returns whether lock
acquisition was successful.

See flock(2).



The current fiber is never suspended.






Not available on Windows.






unlock(self)

          Releases an existing advisory lock on the file held by this process.

See flock(2).



The current fiber is never suspended.






Not available on Windows.






read_some(self, buffer: byte_span) → integer

          Read data from the stream file and blocks current fiber until it completes or
errs.

Returns the number of bytes read.



write_some(self, buffer: byte_span) → integer

          Write data to the stream file and blocks current fiber until it completes or
errs.

Returns the number of bytes written.




Properties

          
is_open: boolean

          Whether the file is open.



size: integer

          The size of the file.







file.read_all_at


        
Synopsis

          
        local file = require "file"
file.read_all_at(io_object, offset: integer, buffer: byte_span) -> integer




Description

          Attempt to read a certain amount of data at the specified offset before
returning.



This operation is implemented in terms of zero or more calls to the
device’s read_some_at function.









file.read_at_least_at


        
Synopsis

          
        local file = require "file"
file.read_at_least_at(io_object, offset: integer, buffer: byte_span, minimum: integer) -> integer




Description

          Attempt to read a certain amount of data at the specified offset before
returning.



This operation is implemented in terms of zero or more calls to the
device’s read_some_at function.









file.write_all_at


        
Synopsis

          
        local file = require "file"
file.write_all_at(io_object, offset: integer, buffer: byte_span|string) -> integer




Description

          Write all of the supplied data at the specified offset before returning.



This operation is implemented in terms of zero or more calls to the
device’s write_some_at function.









file.write_at_least_at


        
Synopsis

          
        local file = require "file"
file.write_at_least_at(io_object, offset: integer, buffer: byte_span, minimum: integer) -> integer




Description

          Write data until a minimum number of bytes has been transferred at the
specified offset before returning.



This operation is implemented in terms of zero or more calls to the
device’s write_some_at function.









ip.address


        A variant type to represent IPv4 and IPv6 addresses. Some features are only
available for one version of the protocol and will raise an error when you try
to use it against an IP address of a different version.


Functions

          
new() → ip.address

          
        new()    ①
new(str) ②




	① Default constructor.

	② Create an IPv4 address in dotted decimal form, or from an IPv6 address in
hexadecimal notation.







any_v4() → ip.address

          Create an address object that represents any (v4) address.



any_v6() → ip.address

          Create an address object that represents any (v6) address.



loopback_v4() → ip.address

          Create an address object that represents the loopback (v4) address.



loopback_v6() → ip.address

          Create an address object that represents the loopback (v6) address.



broadcast_v4() → ip.address

          Create an address object that represents the broadcast (v4) address.




Functions (v4)

          
to_v6(self) → ip.address

          Create an IPv4-mapped IPv6 address.




Functions (v6)

          
to_v4(self) → ip.address

          Create an IPv4 address from a IPv4-mapped IPv6 address.




Properties

          
is_loopback: boolean

          Whether the address is a loopback address.



is_multicast: boolean

          Whether the address is a multicast address.



is_unspecified: boolean

          Whether the address is unspecified.



is_v4: boolean

          Whether the address is an IP version 4 address.



is_v6: boolean

          Whether the address is an IP version 6 address.




Properties (v6)

          An error will be raised if you try to use against a v4 object.


is_link_local: boolean

          Whether the address is link local.



is_multicast_global: boolean

          Whether the address is a global multicast address.



is_multicast_link_local: boolean

          Whether the address is a link-local multicast address.



is_multicast_node_local: boolean

          Whether the address is a node-local multicast address.



is_multicast_org_local: boolean

          Whether the address is a org-local multicast address.



is_multicast_site_local: boolean

          Whether the address is a site-local multicast address.



is_site_local: boolean

          Whether the address is site local.



is_v4_mapped: boolean

          Whether the address is a mapped IPv4 address.



scope_id: integer

          The scope ID of the address. Read-write property.




Metamethods

          

	
__tostring()


	
__eq()


	
__lt()


	
__le()











ip.get_address_info


        
Synopsis

          
        local ip = require "ip"

ip.tcp.get_address_info()
ip.tcp.get_address_v4_info()
ip.tcp.get_address_v6_info()
ip.udp.get_address_info()
ip.udp.get_address_v4_info()
ip.udp.get_address_v6_info()

function(host: string|ip.address, service: string|integer[, flags: string[]])
    -> { address: ip.address, port: integer, canonical_name: string|nil }[]




Description

          Forward-resolves host and service into a list of endpoint entries. Current fiber
is suspended until operation finishes.



If no flags are passed to this function (i.e. flags is nil) then
this function will follow the glibc defaults even on non-glibc systems:
bit.bor(address_configured,v4_mapped).




Returns a list of entries. Each entry will be a table with the following
members:



	
address: ip.address.


	
port: integer.






If "canonical_name" is passed in flags then each entry will also include:



	
canonical_name: string.






More
info on Boost.Asio documentation.

If host is an ip.address then no host name resolution should be attempted.

If service is a number then no service name resolution should be attempted.



Flags

          
address_configured

          The
flag with same name in Boost.Asio:



Only return IPv4 addresses if a non-loopback IPv4 address is configured for the
system. Only return IPv6 addresses if a non-loopback IPv6 address is configured
for the system.







all_matching

          The
flag with same name in Boost.Asio:



If used with v4_mapped, return all matching IPv6 and IPv4 addresses.







canonical_name

          The
flag with same name in Boost.Asio:



Determine the canonical name of the host specified in the query.







passive

          The
flag with same name in Boost.Asio:



Indicate that returned endpoint is intended for use as a locally bound socket
endpoint.







v4_mapped

          The
flag with same name in Boost.Asio:



If the query protocol family is specified as IPv6, return IPv4-mapped IPv6
addresses on finding no IPv6 addresses.











ip.get_name_info


        
Synopsis

          
        local ip = require "ip"

ip.tcp.get_name_info()
ip.udp.get_name_info()

function(a: ip.address, port: integer)
    -> { host_name: string, service_name: string }[]




Description

          Reverse-resolves the endpoint into a list of entries. Current fiber is suspended
until operation finishes.

Returns a list of entries. Each entry will be a table with the following
members:



	
host_name: string.


	
service_name: string.






More
info on Boost.Asio documentation.






ip.connect


        
Synopsis

          
        local ip = require "ip"
ip.connect(sock, resolve_results: table[, condition: function]) -> ip.address, integer




Description

          Attempts to connect a socket to one of a sequence of endpoints. It does this by
repeated calls to the socket's connect member function, once for each
endpoint in the sequence, until a connection is successfully established.



Parameters

          
sock

          The socket to be connected. If the socket is already open, it will be closed.



resolve_results

          The return from the function get_address_info(). If the sequence is empty, the
error not_found will be raised.



condition

          A function that is called prior to each connection attempt. The signature of the
function object must be:


        function condition(last_error, next_address, next_port) -> boolean


The last_error parameter contains the result from the most recent connect
operation. Before the first connection attempt, last_error is nil. The next
parameters together specify the next endpoint to be tried. The closure should
return true if the next endpoint should be tried, and false if it should be
skipped.




Example

          
        local addr, port = ip.connect(
    sock, ip.tcp.get_address_info("www.example.com", "http"),
    function(last_error, next_addr, next_port)
        if last_error then
            print("Error: " .. tostring(last_error))
        end
        print("Trying: " .. ip.tostring(next_addr, next_port))
        return true
    end
)
print("Connected to: " .. ip.tostring(addr, port))







ip.dial


        
Synopsis

          
        local ip = require "ip"

ip.tcp.dial()
ip.udp.dial()

function(ep: string) -> socket




Description

          

	
Creates a socket.


	
Breaks ep into host and service.


	
Forward-resolves host and service into a list of endpoints.


	
Connects the created socket to any of the resolved endpoints.


	
Returns the connected socket.






Current fiber is suspended until operation finishes.






ip.host_name


        
Synopsis

          
        local ip = require "ip"
ip.host_name() -> string




Description

          Get the current host name.






ip.tostring


        
Synopsis

          
        local ip = require "ip"
ip.tostring(addr: ip.address[, port: integer]) -> string




Description

          Convert a traditional network endpoint (IP address + unsigned 16-bit
integer) to its string representation. If port is nil, then perform the
equivalent of tostring(addr).






ip.toendpoint


        
Synopsis

          
        local ip = require "ip"
ip.toendpoint(ep: string) -> ip.address, integer




Description

          Convert a traditional network endpoint (IP address + unsigned 16-bit
integer) from its string representation to its decoupled members.






ip.tcp.listen


        
Synopsis

          
        local ip = require "ip"

ip.tcp.listen(ep: string) -> ip.tcp.acceptor




Description

          

	
Creates a socket.


	
Set common options (e.g. reuse-address).


	
Binds the socket to ep.


	
Put the socket in the listening state.


	
Returns the socket.











ip.tcp.acceptor


        
        local a = ip.tcp.acceptor.new()
a:open('v4')
a:set_option('reuse_address', true)
a:bind('127.0.0.1', 8080)
a:listen()

while true do
    local s = a:accept()
    spawn(function()
        my_client_handler(s)
    end)
end



Functions

          
new() → ip.tcp.acceptor

          Constructor.



open(self, address_family: "v4"|"v6"|ip.address)

          Open the acceptor.

address_family can be either "v4" or "v6". If you provide an ip.address
object, the appropriate value will be inferred.



set_option(self, opt: string, val)

          Set an option on the acceptor.

Currently available options are:



	
"reuse_address"


	
Check
Boost.Asio documentation.


	
"enable_connection_aborted"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.


	
"v6_only"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the acceptor.

Currently available options are:



	
"reuse_address"


	
Check
Boost.Asio documentation.


	
"enable_connection_aborted"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.


	
"v6_only"


	
Check
Boost.Asio documentation.








bind(self, addr: ip.address|string, port: integer)

          Bind the acceptor to the given local endpoint.



listen(self [, backlog: integer])

          Place the acceptor into the state where it will listen for new connections.

backlog is the maximum length of the queue of pending connections. If not
provided, an implementation defined maximum length will be used.



accept(self) → ip.tcp.socket

          Initiate an accept operation and blocks current fiber until it completes or
errs.



wait(self, wait_type: "read"|"write"|"error")

          Wait for the socket to become ready to read, ready to write, or to have pending
error conditions.

In short, the reactor model is exposed on top of the proactor model.



You shouldn’t be using reactor-style operations on Emilua. However if
you’re trying to compete against systemD (or just xinetd) implementing a service
manager employing socket activation then you’ll need the readiness event to
trigger the managed service startup sequence.




wait_type can be one of the following:



	
"read"


	
Wait for a socket to become ready to read.


	
"write"


	
Wait for a socket to become ready to write.


	
"error"


	
Wait for a socket to have error conditions pending.








close(self)

          Close the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to
again perform socket accept operations.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, address_family: "v4"|"v6"|ip.address, fd: file_descriptor)

          Assign an existing native acceptor to self.

address_family can be either "v4" or "v6". If you provide an ip.address
object, the appropriate value will be inferred.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous accept operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native acceptor
is then transferred to the caller.








Properties

          
is_open: boolean

          Whether the acceptor is open.



local_address: ip.address

          The local address endpoint of the acceptor.



local_port: integer

          The local port endpoint of the acceptor.







ip.tcp.socket


        
        -- `socket_pair()` implementation is
-- left as an exercise for the reader
local a, b = socket_pair()

spawn(function()
    local buf = byte_span.new(1024)
    local nread = b:read_some(buf)
    print(buf:first(nread))
end):detach()

local nwritten = stream.write_all(a, 'Hello World')
print(nwritten)



Functions

          
new() → ip.tcp.socket

          Constructor.



open(self, address_family: "v4"|"v6"|ip.address)

          Open the socket.

address_family can be either "v4" or "v6". If you provide an ip.address
object, the appropriate value will be inferred.



bind(self, addr: ip.address|string, port: integer)

          Bind the socket to the given local endpoint.



close(self)

          Close the socket.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the boost::asio::error::operation_aborted
error.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, address_family: "v4"|"v6"|ip.address, fd: file_descriptor)

          Assign an existing native socket to self.

address_family can be either "v4" or "v6". If you provide an ip.address
object, the appropriate value will be inferred.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error. Ownership of the
native socket is then transferred to the caller.







io_control(self, command: string[, …​])

          Perform an IO control command on the socket.

Currently available commands are:



	
"bytes_readable"


	
Expects no arguments. Get the amount of data that can be
read without blocking. Implements the FIONREAD IO control command.








shutdown(self, what: "receive"|"send"|"both")

          Disable sends or receives on the socket.

what can be one of the following:



	
"receive"


	
Shutdown the receive side of the socket.


	
"send"


	
Shutdown the send side of the socket.


	
"both"


	
Shutdown both send and receive on the socket.








connect(self, addr: ip.address, port: integer)

          Initiate a connect operation and blocks current fiber until it completes or
errs.



disconnect(self)

          Dissolve the socket’s association by resetting the socket’s peer address
(i.e. connect(3) will be called with an AF_UNSPEC address).



read_some(self, buffer: byte_span) → integer

          Read data from the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes read.



write_some(self, buffer: byte_span) → integer

          Write data to the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



receive(self, buffer: byte_span, flags: string[]) → integer

          Read data from the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes read.



send(self, buffer: byte_span, flags: string[]) → integer

          Write data to the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



send_file(self, file: file.random_access, offset: integer, size_in_bytes: integer[, head: byte_span[, tail: byte_span[, n_number_of_bytes_per_send: integer]]]) → integer

          A wrapper for the
TransmitFile()
function.



Only available on Windows.






Lua conventions on index starting at 1 are ignored. Indexes here
are OS-mandated and start at 0.






wait(self, wait_type: "read"|"write"|"error")

          Wait for the socket to become ready to read, ready to write, or to have pending
error conditions.

In short, the reactor model is exposed on top of the proactor model.



You shouldn’t be using reactor-style operations on Emilua. However
there’s this one obsolete and buggy TCP feature that presumes reactor-style
operations: SO_OOBINLINE (out_of_band_inline) + sockatmark()
(at_mark). If you’re implementing
an
ancient obscure protocol that for some reason can avoid the TCP OOB bugs then
you’ll need to use this function.




wait_type can be one of the following:



	
"read"


	
Wait for a socket to become ready to read.


	
"write"


	
Wait for a socket to become ready to write.


	
"error"


	
Wait for a socket to have error conditions pending.








set_option(self, opt: string, val)

          Set an option on the socket.

Currently available options are:



	
"tcp_no_delay"


	
Check
Boost.Asio documentation.


	
"send_low_watermark"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_low_watermark"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"out_of_band_inline"


	
Socket option for putting received out-of-band data inline.


Do bear in mind that
the
BSD socket API for SO_OOBINLINE is incompatible with proactor-style
operations.






	
"linger"


	
Check
Boost.Asio documentation.


	
"keep_alive"


	
Check
Boost.Asio documentation.


	
"do_not_route"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.


	
"v6_only"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the socket.

Currently available options are:



	
"tcp_no_delay"


	
Check
Boost.Asio documentation.


	
"send_low_watermark"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_low_watermark"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"out_of_band_inline"


	
Check
Boost.Asio documentation.


	
"linger"


	
Check
Boost.Asio documentation.


	
"keep_alive"


	
Check
Boost.Asio documentation.


	
"do_not_route"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.


	
"v6_only"


	
Check
Boost.Asio documentation.









Function flags

          
do_not_route

          The
flag with same name in Boost.Asio:



Specify that the data should not be subject to routing.







end_of_record

          The
flag with same name in Boost.Asio:



Specifies that the data marks the end of a record.







out_of_band

          The
flag with same name in Boost.Asio:



Process out-of-band data.







peek

          The
flag with same name in Boost.Asio:



Peek at incoming data without removing it from the input queue.








Properties

          
is_open: boolean

          Whether the socket is open.



local_address: ip.address

          The local address endpoint of the socket.



local_port: integer

          The local port endpoint of the socket.



remote_address: ip.address

          The remote address endpoint of the socket.



remote_port: integer

          The remote port endpoint of the socket.



at_mark: boolean

          Whether the socket is at the out-of-band data mark.



You must set the out_of_band_inline socket option and use
reactor-style operations (wait()) to use this feature.










ip.udp.socket


        
        local sock = ip.udp.socket.new()
sock.open('v4')
sock:bind(ip.address.any_v4(), 1234)

local buf = byte_span.new(1024)
local nread, remote_addr, remote_port = sock:receive_from(buf)
sock:send_to(buf:first(nread), remote_addr, remote_port)



Functions

          
new() → ip.udp.socket

          Constructor.



open(self, address_family: "v4"|"v6"|ip.address)

          Open the socket.

address_family can be either "v4" or "v6". If you provide an ip.address
object, the appropriate value will be inferred.



bind(self, addr: ip.address|string, port: integer)

          Bind the socket to the given local endpoint.



shutdown(self, what: "receive"|"send"|"both")

          Disable sends or receives on the socket.

what can be one of the following:



	
"receive"


	
Shutdown the receive side of the socket.


	
"send"


	
Shutdown the send side of the socket.


	
"both"


	
Shutdown both send and receive on the socket.








Doing this only mutates the socket object, but nothing will be sent over
the wire. It could be useful if you’re planning to send the FD around to other
processes.






connect(self, addr: ip.address, port: integer)

          Set the default destination address so datagrams can be sent using send()
without specifying a destination address.



disconnect(self)

          Dissolve the socket’s association by resetting the socket’s peer address
(i.e. connect(3) will be called with an AF_UNSPEC address).



close(self)

          Close the socket.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the boost::asio::error::operation_aborted
error.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, address_family: "v4"|"v6"|ip.address, fd: file_descriptor)

          Assign an existing native socket to self.

address_family can be either "v4" or "v6". If you provide an ip.address
object, the appropriate value will be inferred.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error. Ownership of the
native socket is then transferred to the caller.







receive(self, buffer: byte_span[, flags: string[]]) → integer

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read.



receive_from(self, buffer: byte_span[, flags: string[]]) → integer, ip.address, integer

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the endpoint (address + port) of the
remote sender of the datagram.



send(self, buffer: byte_span[, flags: string[]]) → integer

          Send data on the datagram socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



The send operation can only be used with a connected socket. Use the
send_to function to send data on an unconnected datagram socket.






send_to(self, buffer: byte_span, remote_addr: ip.address, remote_port: integer[, flags: string[]]) → integer

          Send a datagram to the specified remote endpoint and blocks current fiber until
it completes or errs.

Returns the number of bytes written.



set_option(self, opt: string, val)

          Set an option on the socket.

Currently available options are:



	
"debug"


	
Check
Boost.Asio documentation.


	
"broadcast"


	
Check
Boost.Asio documentation.


	
"do_not_route"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"reuse_address"


	
Check
Boost.Asio documentation.


	
"multicast_loop"


	
Check
Boost.Asio documentation.


	
"multicast_hops"


	
Check
Boost.Asio documentation.


	
"join_multicast_group"


	
Check
Boost.Asio documentation.


	
"leave_multicast_group"


	
Check
Boost.Asio documentation.


	
"multicast_interface"


	
Check
Boost.Asio documentation.


	
"unicast_hops"


	
Check
Boost.Asio documentation.


	
"v6_only"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the socket.

Currently available options are:



	
"debug"


	
Check
Boost.Asio documentation.


	
"broadcast"


	
Check
Boost.Asio documentation.


	
"do_not_route"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"reuse_address"


	
Check
Boost.Asio documentation.


	
"multicast_loop"


	
Check
Boost.Asio documentation.


	
"multicast_hops"


	
Check
Boost.Asio documentation.


	
"unicast_hops"


	
Check
Boost.Asio documentation.


	
"v6_only"


	
Check
Boost.Asio documentation.








io_control(self, command: string[, …​])

          Perform an IO control command on the socket.

Currently available commands are:



	
"bytes_readable"


	
Expects no arguments. Get the amount of data that can be
read without blocking. Implements the FIONREAD IO control command.









Function flags

          
do_not_route

          The
flag with same name in Boost.Asio:



Specify that the data should not be subject to routing.







end_of_record

          The
flag with same name in Boost.Asio:



Specifies that the data marks the end of a record.







out_of_band

          The
flag with same name in Boost.Asio:



Process out-of-band data.







peek

          The
flag with same name in Boost.Asio:



Peek at incoming data without removing it from the input queue.








Properties

          
is_open: boolean

          Whether the socket is open.



local_address: ip.address

          The local address endpoint of the socket.



local_port: integer

          The local port endpoint of the socket.



remote_address: ip.address

          The remote address endpoint of the socket.



remote_port: integer

          The remote port endpoint of the socket.







mutex


        
        local mutex = require('mutex')

local function ping_sender()
    sleep(30)
    scope(function()
        scope_cleanup_push(function() ws_write_mtx:unlock() end)
        ws_write_mtx:lock()
        ws:ping()
    end)
end

local function queue_consumer()
    scope(function()
        scope_cleanup_push(function() queue_mtx:unlock() end)
        queue_mtx:lock()
        while #queue == 0 do
            queue_cond:wait(queue_mtx)
        end
        for _, e in ipairs(queue) do
            consume_item(e)
        end
        queue = {}
    end)
end


A mutex.


Functions

          
new() → mutex

          Constructor.



lock(self)

          Locks the mutex.



This suspending function does not act as an cancellation point.






This mutex applies dispatch semantics. That means no context switch to
other ready fibers will take place if it’s possible to acquire the mutex
immediately.






try_lock(self) → boolean

          Tries to lock the mutex. Returns whether lock acquisition was successful.



It’s an error to call try_lock() if current fiber already owns the
mutex (cf. recursive_mutex(3em) for an alternative).






The current fiber is never suspended.






unlock(self)

          Unlocks the mutex.







recursive_mutex


        A recursive mutex.

A fiber that already has exclusive ownership of a given recursive_mutex
instance can call lock() or try_lock() to acquire an additional level of
ownership of the mutex. unlock() must be called once for each level of
ownership acquired by a single fiber before ownership can be acquired by another
fiber.


Functions

          
new() → recursive_mutex

          Constructor.



lock(self)

          Locks the mutex.



This suspending function does not act as a cancellation point.






This mutex applies dispatch semantics. That means no context switch to
other ready fibers will take place if it’s possible to acquire the mutex
immediately.






try_lock(self) → boolean

          Tries to lock the mutex. Returns whether lock acquisition was successful.



The current fiber is never suspended.






unlock(self)

          Unlocks the mutex.







future


        Futures and promises.



This implementation follows the model of shared futures. Thus multiple
waiters on the same future are allowed.





Functions

          
new() → promise, future

          Constructor.

Creates a promise and its associated future and returns them.




future functions

          
get(self) → value

          If result is available, returns result. Otherwise, blocks current fiber until
result is ready and returns it.




promise functions

          
set_value(self, v)

          Atomically stores the value into the shared state and makes the state ready.



set_error(self, e)

          Atomically stores the exception e into the shared state and makes the state
ready.







pipe.read_stream


        
Functions

          
new() → pipe.read_stream

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into a pipe end.







close(self)

          Close the pipe.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous read operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.







cancel(self)

          Cancel all asynchronous operations associated with the pipe.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native pipe to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native pipe is
then transferred to the caller.







read_some(self, buffer: byte_span) → integer

          Read data from the pipe and blocks current fiber until it completes or errs.

Returns the number of bytes read.




Properties

          
is_open: boolean

          Whether the pipe is open.







pipe.write_stream


        
Functions

          
new() → pipe.write_stream

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into a pipe end.







close(self)

          Close the pipe.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.







cancel(self)

          Cancel all asynchronous operations associated with the pipe.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous write operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native pipe to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous write operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native pipe is
then transferred to the caller.







write_some(self, buffer: byte_span) → integer

          Write data to the pipe and blocks current fiber until it completes or errs.

Returns the number of bytes written.




Properties

          
is_open: boolean

          Whether the pipe is open.







pipe.pair


        
Synopsis

          
        local pipe = require "pipe"
pipe.pair() -> pipe.read_stream, pipe.write_stream




Description

          Creates a pipe.






regex


        
Types

          
regex

          
Functions

          
new(options: table) → regex

          Constructor.


options


	
pattern: string


	
The pattern to match against.


	
grammar


	
The grammar.
Currently it has support for:



	
"basic".


	
"extended".


	
"ecma".








	
ignore_case: boolean = false


	
Whether to ignore casing.


	
nosubs: boolean = false


	
When performing matches, all marked sub-expressions
are treated as non-marking sub-expressions.


	
optimize: boolean = false


	
Whether to optimize the regex.











Functions

          
match(re: regex, str: string|byte_span) → matches…​

          Try to match the pattern against the whole string str. If successful, then
returns the captures from the pattern; otherwise it returns nil. If re
specifies no captures, then the whole match is returned.



search(re: regex, str: string|byte_span) → table

          Scan through str looking for the first location where the regular expression
pattern produces a match, and return a corresponding match object. The returned
table contains the following string keys:



	
"empty": boolean


	
Whether match was unsuccessful.






The table also contains numeric keys from 0 to the number of specified capture
groups. 0 will represent the whole match and subsequent indexes are present if
a corresponding match for that capturing group was found. Each element will be a
table with the following members:



	
"start": integer


	
The index for the first character that matched.


	
"end_": integer`


	
The index for the last character that matched.








split(re: regex, str: string|byte_span) → string[]|byte_span[]

          Split str by the occurrences of re.



patsplit(re: regex, str: string|byte_span) → string[]|byte_span[]

          Returns occurrences of re in str.







serial_port


        
        local port = serial_port.new()
port:open(name)



Functions

          
new() → serial_port

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into a serial_port object.







ptypair() → serial_port, file_descriptor

          Open a pair of connected pseudoterminal devices. Returns the master and the
slave ends, respectively.



The flag O_NOCTTY will be used to open the slave end so it doesn’t
accidentally become the controlling terminal for the session of the calling
process.






Use the returned file_descriptor object in system.spawn()'s
set_ctty.






open(self, device: string)

          Open the serial port using the specified device name.

device is something like "COM1" on Windows, and "/dev/ttyS0" on POSIX
platforms.



close(self)

          Close the port.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous read or write operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous read or write operations to
finish immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native port to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.



send_break(self)

          Send a break sequence to the serial port.

This function causes a break sequence of platform-specific duration to be sent
out the serial port.



read_some(self, buffer: byte_span) → integer

          Read data from the port and blocks current fiber until it completes or errs.

Returns the number of bytes read.



write_some(self, buffer: byte_span) → integer

          Write data to the port and blocks current fiber until it completes or errs.

Returns the number of bytes written.



isatty(self) → boolean

          See isatty(3).



tcgetpgrp(self) → integer

          See tcgetpgrp(3).



tcsetpgrp(self, pgid_id: integer)

          See tcsetpgrp(3).




Properties

          
is_open: boolean

          Whether the port is open.



baud_rate: integer

          Read or write current baud rate setting.



flow_control: "software"|"hardware"|nil

          Read or write current flow control setting.



parity: "odd"|"even"|nil

          Read or write current parity setting.



stop_bits: string

          Read or write current stop bit width setting.

It can be one of:



	
"one".


	
"one_point_five".


	
"two".








character_size: integer

          Read or write current character size setting.







time.sleep


        
Synopsis

          
        local time = require "time"
time.sleep(secs: number)




Description

          Blocks the fiber until secs seconds have passed.



Floating point numbers give room for subsecond precision.









time.steady_clock


        
        local clock = require('time').steady_clock
local timepoint = clock.now()


A monotonic clock (i.e. its time points cannot decrease as physical time moves
forward).


Functions

          
now() → steady_clock.time_point

          Returns a new time point representing the current value of the clock.



epoch() → steady_clock.time_point

          Returns a new time point representing the epoch of the clock.




time_point functions

          
add(self, secs: number)

          Modifies the time point by the given duration.



When the duration is converted to the native tick representation of the
clock, it’ll be rounded to the nearest time point rounding to even in halfway
cases.






sub(self, secs: number)

          Modifies the time point by the given duration.



When the duration is converted to the native tick representation of the
clock, it’ll be rounded to the nearest time point rounding to even in halfway
cases.







time_point properties

          
seconds_since_epoch: number

          The number of elapsed seconds since the clock’s epoch.




time_point metamethods

          

	
__add()


	
__sub()


	
__eq()


	
__lt()


	
__le()











time.steady_timer


        
        local timer = require('time').steady_timer
local t = timer.new()

spawn(function() print('Hello') end)

t:expires_after(2) --< 2 seconds
t:wait()
print('World')


A monotonic timer (i.e. the time points of the underlying clock cannot decrease
as physical time moves
forward). As
in Boost.Asio:



A waitable timer is always in one of two states: "expired" or "not expired". If
the wait() or async_wait() function is called on an expired timer, the wait
operation will complete immediately.

Changing an active waitable timer’s expiry time. Changing the expiry time of a timer while there are pending asynchronous waits
causes those wait operations to be cancelled.






Functions

          
new() → steady_timer

          
        local t = steady_timer.new()


Constructor. Returns a new steady_timer object.



expires_at(self, tp: time.steady_clock.time_point) → integer

          Forward the call to
the
function with same name in Boost.Asio:



Set the timer’s expiry time as an absolute time. Any pending asynchronous wait
operations will be cancelled. The handler for each cancelled operation will be
invoked with the boost::asio::error::operation_aborted error code.

Return Value. The number of asynchronous operations that were cancelled.







expires_after(self, secs: number) → integer

          Forward the call to
the
function with same name in Boost.Asio:



Set the timer’s expiry time relative to now. Any pending asynchronous wait
operations will be cancelled. The handler for each cancelled operation will be
invoked with the boost::asio::error::operation_aborted error code.

Return Value. The number of asynchronous operations that were cancelled.





Expiry time is given in seconds.



wait(self)

          Initiate a wait operation on the timer and blocks current fiber until one of the
events occur:



	
The timer has expired.


	
The timer was cancelled, in which case it raises
boost::asio::error::operation_aborted.








cancel(self) → integer

          Cancel any operations that are waiting on the timer. Returns the number of
asynchronous operations that were cancelled.




Properties

          
expiry: time.steady_clock.time_point

          The timer’s expiry time as an absolute time.

Whether the timer has expired or not does not affect this value.







time.system_clock


        
        local clock = require('time').system_clock
local timepoint = clock.now()


The system-wide real time wall clock. It uses the UNIX epoch.



On most systems, the system time can be adjusted at any moment.





Functions

          
now() → system_clock.time_point

          Returns a new time point representing the current value of the clock.



epoch() → system_clock.time_point

          Returns a new time point representing the epoch of the clock.




time_point functions

          
add(self, secs: number)

          Modifies the time point by the given duration.



When the duration is converted to the native tick representation of the
clock, it’ll be rounded to the nearest time point rounding to even in halfway
cases.






sub(self, secs: number)

          Modifies the time point by the given duration.



When the duration is converted to the native tick representation of the
clock, it’ll be rounded to the nearest time point rounding to even in halfway
cases.







time_point properties

          
seconds_since_epoch: number

          The number of elapsed seconds since 1 January 1970, not counting leap seconds.




time_point metamethods

          

	
__add()


	
__sub()


	
__eq()


	
__lt()


	
__le()











time.system_timer


        
        local timer = require('time').system_timer
local t = timer.new()


A timer for the
system_clock. As
in Boost.Asio:



A waitable timer is always in one of two states: "expired" or "not expired". If
the wait() or async_wait() function is called on an expired timer, the wait
operation will complete immediately.

Changing an active waitable timer’s expiry time. Changing the expiry time of a timer while there are pending asynchronous waits
causes those wait operations to be cancelled.






Functions

          
new() → system_timer

          
        local t = system_timer.new()


Constructor. Returns a new system_timer object.



expires_at(self, tp: time.system_clock.time_point) → integer

          Forward the call to
the
function with same name in Boost.Asio:



Set the timer’s expiry time as an absolute time. Any pending asynchronous wait
operations will be cancelled. The handler for each cancelled operation will be
invoked with the boost::asio::error::operation_aborted error code.

Return Value. The number of asynchronous operations that were cancelled.







wait(self)

          Initiate a wait operation on the timer and blocks current fiber until one of the
events occur:



	
The timer has expired.


	
The timer was cancelled, in which case it raises
boost::asio::error::operation_aborted.








cancel(self) → integer

          Cancel any operations that are waiting on the timer. Returns the number of
asynchronous operations that were cancelled.




Properties

          
expiry: time.system_clock.time_point

          The timer’s expiry time as an absolute time.

Whether the timer has expired or not does not affect this value.







time.high_resolution_clock


        
        local clock = require('time').high_resolution_clock
local timepoint = clock.now()


The clock with the smallest tick period provided by the system.



This clock is useful for microbenchmarking purposes.





Functions

          
now() → high_resolution_clock.time_point

          Returns a new time point representing the current value of the clock.



epoch() → high_resolution_clock.time_point

          Returns a new time point representing the epoch of the clock.




Attributes

          
is_steady: boolean

          Whether the time between ticks is always constant (i.e. calls to now() return
values that increase monotonically even in case of some external clock
adjustment).




time_point properties

          
seconds_since_epoch: number

          The number of elapsed seconds since the clock’s epoch.




time_point metamethods

          

	
__sub()


	
__eq()


	
__lt()


	
__le()











spawn


        
Synopsis

          
        spawn(f: function) -> fiber




Description

          Spawns a new fiber to run f. Post semantics are used, so the current fiber
(the one calling spawn()) continues to run until it reaches a suspension
point.

Fibers are the primitive of choice to represent concurrency. Every time you need
to increase the concurrency level, just spawn a fiber. Fibers are
cooperative and only
transfer control to other fibers in well-defined points (sync primitives, IO
functions and any suspending function such as this_fiber.yield()). These
points are also used by the cancellation API.

No two fibers from the same Lua VM run in parallel (even when the underlying
VM’s thread pool has threads available).



spawn() is a global so it doesn’t need to be require()d.






fiber functions

          
join(self)

          Read pthread_join().

Returns the values returned by the fiber’s start function. If that fiber exits
with an error, that error is re-raised here (and fiber is considered joined).



detach(self)

          Read pthread_detach().

If the GC collects the fiber handle, it’ll be detached.



cancel(self)

          Read pthread_cancel().




fiber properties

          
cancellation_caught: boolean

          Read PTHREAD_CANCELED.



joinable: boolean

          Whether joinable.







this_fiber


        Object referring to current fiber.



this_fiber is a global so it doesn’t need to be require()d.





Functions

          
yield()

          Reschedule current fiber to be executed in the next round so other ready fibers
have a chance to run now. You usually don’t need to call this function as any
suspending function already do that.



{forbid,allow}_suspend()

          
        forbid_suspend()
allow_suspend()


A call to forbid_suspend() will put the fiber in the state of
suspension-disallowed and any attempt to suspend the fiber while it is in this
state will raise an error.

forbid_suspend() may be called multiple times. A matching number of calls to
allow_suspend() will put the fiber out of the suspension-disallowed
state. You must not call allow_suspend() if there was no prior call to
forbid_suspend().

These functions aren’t generally useful and they would have no purpose in
preemptive multitasking. However a cooperative multitasking environment offers
opportunities to avoid some round-trips to sync primitives. These opportunities
shouldn’t really be used and the programmer should just rely on the classical
sync primitives. However I can’t tame every wild programmer out there so there
is this mechanism to at least document the code in mechanisms similar to
assert() statements from native languages.

They’re only useful if there are comprehensive test cases. Still, the use of
these functions may make the code more readable. And some tools may be developed
to understand these blocks and do some simple static analysis.



this_fiber.{disable,restore}_cancellation()

          
        disable_cancellation()
restore_cancellation()


Check the cancellation tutorial to see what it does.




Properties

          
is_main: boolean

          Whether this is the main fiber of the program.



local_: table

          Fiber-local storage.



id: string

          An id string for debugging purposes.



Use it only for debugging purposes. Do not exploit this value to
create messy work-arounds. There is no need to use it beyond anything other than
debugging purposes.










inbox


        
Synopsis

          
        local inbox = require "inbox"




Description

          Returns the inbox associated with the caller VM.



Methods

          
receive(self) → value

          Receives a message.



close(self)

          Closes the channel. No further messages can be received after inbox is closed.



If inbox is not imported by the time the main fiber finishes execution,
it’s automatically closed.










spawn_vm


        
Synopsis

          
        spawn_vm(module: string) -> channel
spawn_vm(opts: table) -> channel




Description

          Creates a new actor and returns a tx-channel.

The new actor will execute with _CONTEXT='worker' (this _CONTEXT is not
propagated to imported submodules within the actor).


Threading with work-stealing


Spawn more VMs than threads and spawn them all in the same thread-pool. The
system will transparently steal VMs from the shared pool to keep the work-queue
somewhat fair between the threads.





Threading with load-balancing


Spawn each VM in a new thread pool and make sure each-one has only one
thread. Now use messaging to apply some load-balancing strategy of your choice.





Parameters

          

	
module: string|filesystem.path


	


	
string


	
The module that will serve as the entry point for the new actor.


'.' is also a valid module to use when you spawn actors.






	
filesystem.path


	
Only valid for IPC-based actors (see parameter subprocess below).








	
inherit_context: boolean = true


	
Whether to inherit the thread pool of the parent VM (i.e. the one calling
spawn_vm()). On false, a new thread pool (starting with 1 thread) is
created to run the new actor.
Emilua can handle multiple VMs running on the same thread just fine. Cooperative
multitasking is used to alternate execution among the ready VMs.



A thread pool is one type of an execution context. The API prefers the term
“context” as it’s more general than “thread pool”.






	
concurrency_hint: integer|"unsafe_io"|"unsafe" = 0


	


	
integer


	
A suggestion to the new thread pool (inherit_context should be false) as to
the number of active threads that should be used for scheduling
actors[44].



You still need to call spawn_context_threads() to create the extra
threads.












	
"unsafe_io"


	
Same as
ASIO_CONCURRENCY_HINT_UNSAFE_IO.


	
"unsafe"


	
Same as
ASIO_CONCURRENCY_HINT_UNSAFE. It
can only be used to spawn subprocess-based actors.








	
scheduler_task_usec: integer = -1


	
The maximum time, in microseconds, that the scheduler will wait for its
reactor task to complete. A value of -1 means that no limit is placed on
this wait time. May be set to 0 to enable CPU-bound spinning.


	
scheduler_wait_usec: integer = -1


	
The maximum time, in microseconds, that the scheduler will wait on its wake-up
event in an idle thread (i.e. a thread that is not otherwise executing a
handler or waiting on the reactor). A value of -1 means that no limit is
placed on this wait time. May be set to 0 to enable CPU-bound spinning in an
execution context that is being run on multiple threads.


	
reactor_preallocated_io_objects: integer = 0


	
The number of internal reactor I/O object states to allocate at construction.
The reactor implementation uses per I/O object state to track things like the
queue of outstanding operations. These state objects are recycled once the I/O
object is destroyed, but new ones are allocated if there are no unused state
objects currently available.

If an upper bound on the number of I/O objects is known at construction time,
this configuration option can be set to ensure that no allocations occur after
construction is complete.



	
new_master: boolean = false


	
The first VM (actor) to run in a process has different responsibilities as
that’s the VM that will spawn all other actors in the system. The Emilua runtime
will restrict modification of global process resources that don’t play nice with
threads such as the current working directory and signal handling disposition to
this VM.
Upon spawning a new actor, it’s possible to transfer ownership over these
resources to the new VM. After spawn_vm() returns, the calling actor ceases to
be the master VM in the process and can no longer recover its previous role as
the master VM.



	
subprocess: table|nil


	


	
table


	
Spawn the actor in a new subprocess.



Not available on Windows.












	
nil


	
Default. Don’t spawn the actor in a new subprocess.








	
subprocess.newns_uts: boolean = false


	
Whether to create the process within a
new Linux UTS namespace.


	
subprocess.newns_ipc: boolean = false


	
Whether to create the process within a
new Linux IPC namespace.


	
subprocess.newns_pid: boolean = false


	
Whether to create the process within a new Linux PID namespace.

The first process in a PID namespace is PID1 within that namespace. PID1 has a
few special responsibilities. After subprocess.init.script exits, the Emilua
runtime will fork if it’s running as PID1. This new child will assume the role
of starting your module (the Lua VM). The PID1 process will perform the
following jobs:



	
Forward SIGTERM, SIGUSR1, SIGUSR2, SIGHUP, SIGINT, and SIGRTMIN+4
to the child. There is no point in re-routing every signal, but more may be
added to this set if you present a compelling case.


	
Reap zombie processes.


	
Exit when the child dies with the same exit code as the child’s.








	
subprocess.newns_user: boolean = false


	
Whether to create the process within
a new Linux user namespace.


	
subprocess.newns_net: boolean = false


	
Whether to create the process within a
new Linux net namespace.


	
subprocess.newns_mount: boolean = false


	
Whether to create the process within
a new Linux mount namespace.


	
subprocess.pd_daemon: boolean = false


	
Instead of the default terminate-on-close behaviour, allow the process to live
until it is explicitly killed with kill(2).


Only available on FreeBSD.






	
subprocess.environment: { [string] = string }|nil


	
A table of strings that
will be used as the created process' envp. On nil, an empty envp will be
used.


	
subprocess.stdin,stdout,stderr: "share"|file_descriptor|nil


	


	
"share"


	
The spawned process will share the specified standard handle (stdin, stdout,
or stderr) with the caller process.


	
file_descriptor


	
Use the file descriptor as the specified standard handle (stdin, stdout, or
stderr) for the spawned process.


	
nil


	
Create and use a closed pipe end as the specified standard handle (stdin,
stdout, or stderr) for the spawned process.








	
subprocess.init.script: string


	
The source code for a script that is used to initialize the sandbox in the child
process.

See also:



	
init.script(3em)








	
subprocess.init.arg: file_descriptor|nil


	
A file descriptor that will be sent
to the init.script. The script can access this fd through the variable arg
that is available within the script.


	
subprocess.source_tree_cache: table|nil


	
The Lua source code cache will be pre-populated with this data. Emilua always
query the cache before the filesystem when loading Lua modules so you may use
this cache to bundle the application that will run inside sandboxes w/o
filesystem access (e.g. Capsicum on FreeBSD, Landlock/seccomp on Linux).

That’s a recursive structure (a tree). Each key must be a string with the
component name and the value might be a string (the Lua source code) or another
tree.



	
subprocess.native_modules_cache: string[]|"all"|nil


	


	
string[]


	
A list of plugins to resolve (but not load) on the host and send as file
descriptors to be fdlopen()ed on the subprocess. Plugin file descriptors
will be stored in a special cache on the subprocess, but will only be loaded
once require()d from Lua code.
If the character ":" is appended to a module-id, a file descriptor to the
containing directory will be sent instead.

Under FreeBSD, these file descriptors are protected using Capsicum. Under Linux,
you’re pretty much exposing the whole mount namespace, and should be preparing
for such accordingly.



	
"all"


	
Send file descriptors to all EMILUA_PATH directories (and the related builtin
search paths as well).








	
subprocess.ld_library_directories: file_descriptor[]


	


	
dup() each file descriptor.


	
For each duplicate, cap_rights_limit().


	
Send the duplicates to the new subprocess to fill the environment variable
LD_LIBRARY_PATH_FDS.








Only available on FreeBSD.






	
subprocess.libc_service: libc_service.slave|nil


	
The proxy used to override functions from libc that are used for ambient
authority access within the new subprocess.
The object is consumed by the call and cannot be reused elsewhere afterwards.



It’s wise to combine this with a real syscall firewall (e.g. FreeBSD’s
Capsicum, Linux’s seccomp).













channel functions

          
send(self, msg)

          Sends a message.



You can send the address of other actors (or self) by sending the channel as a
message. A clone of the tx-channel will be made and sent over.

This simple foundation is enough to:



[…​] gives Actors the ability to create and participate in arbitrarily variable
topological relationships with one another […​]

~ https://en.wikipedia.org/wiki/Actor_model









close(self)

          Closes the channel. No further messages can be sent after a channel is closed.



detach(self)

          Detaches the calling VM/actor from the role of supervisor for the process/actor
represented by self. After this operation is done, the process/actor
represented by self is allowed to outlive the calling process.



The channel remains open.






This method is only available for channels associated with IPC-based
actors that are direct children of the caller.






kill(self, signo: integer = system.signal.SIGKILL)

          Sends signo to the subprocess. On SIGKILL, it’ll also close the channel.



This method is only available for channels associated with IPC-based
actors that are direct children of the caller.






A PID file descriptor is used to send signo so no races involving PID
numbers ever happen.







channel properties

          
child_pid: integer

          The process id used by the OS to represent this child process (e.g. the number
that shows up in /proc on some UNIX systems).

Do keep in mind that process reaping happens automatically and the PID won’t
remain reserved once the child dies, so it’s racy to use the PID. Even if
process reaping was not automatic, it’d still be possible to have races if the
parent died while some other process was using this PID. Use child_pid only as
a last resort.



You can only access this field for channels associated with IPC-based
actors that are direct children of the caller.









https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/overview/core/concurrency_hint.html









init.script


        
Synopsis

          
        spawn_vm{ subprocess = { init = { script = init.script } } }




Description

          The C API exposed to init.script.



arg: integer|nil

          The file descriptor passed (if any) at the time the call to spawn_vm() was
made as the parameter subprocess.init.arg.



errexit: boolean = true

          We don’t want to accidentally ignore errors from the C API exposed to the
init.script. That’s why we borrow an idea from BASH. One common folklore among
BASH programmers is the unofficial strict mode. Among other things, this mode
dictates the use of BASH’s set -o errexit.

And errexit exists for the init.script as well. For init.script, errexit
is just a global boolean. Every time the C API fails, the Emilua wrapper for the
function will check its value. On errexit=true (the default when the script
starts), the process will abort whenever some C API fails. That’s specially
important when you’re using the API to drop process credentials/rights.



The controlling terminal

          The Emilua runtime won’t call setsid() nor setpgid() by itself, so the
process will stay in the same session as its parent, and it’ll have access to
the same controlling terminal.

If you want to block the new actor from accessing the controlling terminal, you
may perform the usual calls in init.script:


        C.setsid()




Helpers

          
mode(user: integer, group: integer, other: integer) → integer

          
        function mode(user, group, other)
    return bit.bor(bit.lshift(user, 6), bit.lshift(group, 3), other)
end




`dev_major(dev: integer) → integer

          See makedev(3).



`dev_minor(dev: integer) → integer

          See makedev(3).



write_all(fd: integer, buffer: string) → integer, integer

          Similar to stream.write_all().



receive_with_fd(fd: integer, buf_size: integer) → string, integer, integer

          Returns three values:



	
String with the received message (or nil on error).


	
File descriptor received (or -1 on none).


	
The errno value (or 0 on success).








send_with_fd(fd: integer, str: buffer, fd2: integer) → integer, integer

          Returns two values:



	
sendmsg() return.


	
The errno value (or 0 on success).








set_no_new_privs() → integer, integer

          Set the calling thread’s no_new_privs attribute to true.

Returns two values:



	
prctl()/procctl() return.


	
The errno value (or 0 on success).








bind_unix(fd: integer, path: string) → integer, integer

          Bind to an UNIX socket address.

On pathname-based addresses, the null byte is automatically appennded to path
so one shouldn’t explicitly include it in path.

Returns two values:



	
bind() return.


	
The errno value (or 0 on success).









Functions

          These functions live inside the global table C. errno (or 0 on success) is
returned as the second result.



	
read(). Opposed to the C function, it receives two arguments. The second
argument is the size of the buffer. The buffer is allocated automatically, and
returned as a string in the first result (unless an error happens, then nil
is returned).


	
write(). Opposed to the C function, it receives two arguments. The second
one is a string which will be used as the buffer.


	
sethostname(). Opposed to the C function, it only receives the string
argument.


	
setdomainname(). Opposed to the C function, it only receives the string
argument.


	
setgroups(). Opposed to the C function, it receives a list of numbers as its
single argument.


	
cap_set_proc(). Opposed to the C function, it receives a string as its
single argument. The string is converted to the cap_t type using the
function cap_from_text().


	
cap_drop_bound(). Opposed to the C function, it receives a string as its
single argument. The string is converted to the cap_value_t type using the
function cap_from_name().


	
cap_set_ambient(). Opposed to the C function, it receives a string as its
first argument. The string is converted to the cap_value_t type using the
function cap_from_name(). The second parameter is a boolean.


	
execve(). Opposed to the C function, argv and envp are specified as a
Lua table.


	
fexecve(). Opposed to the C function, argv and envp are specified as a
Lua table.


	
caph_cache_tzdata(): Opposed to the C function, it receives an optional
string argument that is used to fulfill the role of the environment variable
TZ. If no argument is given, a null string is used instead and tzset()
will use UTC as documented in its manpage.






Other exported functions work as usual (except that errno or 0 is returned
as the second result):



	
dup().


	
dup2().


	
close().


	
closefrom(). Aside from invalid arguments (e.g. passing a string/boolean as
argument), this function doesn’t report errors (errors are ignored and no
value is ever returned). This function is also available on Linux (the
implementation emulates the intended behavior using close_range()).


	
open().


	
access().


	
eaccess().


	
mkdir().


	
chdir().


	
mkfifo().


	
socket().


	
listen().


	
mknod().


	
makedev().


	
link().


	
linkat().


	
symlink().


	
chown().


	
chmod().


	
umask().


	
mount().


	
umount().


	
umount2().


	
unmount().


	
fsopen().


	
fsmount().


	
move_mount().


	
fsconfig().


	
fspick().


	
open_tree().


	
pivot_root().


	
chroot().


	
setsid().


	
setpgid().


	
setresuid().


	
setresgid().


	
cap_reset_ambient().


	
cap_set_secbits().


	
unshare().


	
setns().


	
cap_enter().


	
caph_limit_stdio().


	
jail_attach().








Constants

          These constants live inside the global table C.

errno values:



	
EAFNOSUPPORT.


	
EADDRINUSE.


	
EADDRNOTAVAIL.


	
EISCONN.


	
E2BIG.


	
EDOM.


	
EFAULT.


	
EBADF.


	
EBADMSG.


	
EPIPE.


	
ECONNABORTED.


	
EALREADY.


	
ECONNREFUSED.


	
ECONNRESET.


	
EXDEV.


	
EDESTADDRREQ.


	
EBUSY.


	
ENOTEMPTY.


	
ENOEXEC.


	
EEXIST.


	
EFBIG.


	
ENAMETOOLONG.


	
ENOSYS.


	
EHOSTUNREACH.


	
EIDRM.


	
EILSEQ.


	
ENOTTY.


	
EINTR.


	
EINVAL.


	
ESPIPE.


	
EIO.


	
EISDIR.


	
EMSGSIZE.


	
ENETDOWN.


	
ENETRESET.


	
ENETUNREACH.


	
ENOBUFS.


	
ECHILD.


	
ENOLINK.


	
ENOLCK.


	
ENOMSG.


	
ENOPROTOOPT.


	
ENOSPC.


	
ENXIO.


	
ENODEV.


	
ENOENT.


	
ESRCH.


	
ENOTDIR.


	
ENOTSOCK.


	
ENOTCONN.


	
ENOMEM.


	
ENOTSUP.


	
ECANCELED.


	
EINPROGRESS.


	
EPERM.


	
EOPNOTSUPP.


	
EWOULDBLOCK.


	
EOWNERDEAD.


	
EACCES.


	
EPROTO.


	
EPROTONOSUPPORT.


	
EROFS.


	
EDEADLK.


	
EAGAIN.


	
ERANGE.


	
ENOTRECOVERABLE.


	
ETXTBSY.


	
ETIMEDOUT.


	
ENFILE.


	
EMFILE.


	
EMLINK.


	
ELOOP.


	
EOVERFLOW.


	
EPROTOTYPE.






open() flags:



	
O_CLOEXEC.


	
O_CREAT.


	
O_RDONLY.


	
O_WRONLY.


	
O_RDWR.


	
O_EXEC.


	
O_SEARCH.


	
O_DIRECTORY.


	
O_EXCL.


	
O_NOCTTY.


	
O_NOFOLLOW.


	
O_TMPFILE.


	
O_TRUNC.


	
O_APPEND.


	
O_ASYNC.


	
O_DIRECT.


	
O_DSYNC.


	
O_LARGEFILE.


	
O_NOATIME.


	
O_NONBLOCK.


	
O_RESOLVE_BENEATH.


	
O_PATH.


	
O_EMPTY_PATH.


	
O_SYNC.






Mode bits for access permission:



	
S_IRWXU.


	
S_IRUSR.


	
S_IWUSR.


	
S_IXUSR.


	
S_IRWXG.


	
S_IRGRP.


	
S_IWGRP.


	
S_IXGRP.


	
S_IRWXO.


	
S_IROTH.


	
S_IWOTH.


	
S_IXOTH.


	
S_ISUID.


	
S_ISGID.


	
S_ISVTX.






access() flags:



	
F_OK.


	
R_OK.


	
W_OK.


	
X_OK.






openat() flags:



	
AT_FDCWD.


	
AT_EMPTY_PATH.


	
AT_SYMLINK_FOLLOW.


	
AT_SYMLINK_NOFOLLOW.






socket() flags:



	
AF_UNIX.


	
AF_LOCAL.


	
AF_INET.


	
AF_INET6.


	
AF_UNSPEC.


	
SOCK_STREAM.


	
SOCK_DGRAM.


	
SOCK_SEQPACKET.


	
IPPROTO_TCP.


	
IPPROTO_UDP.


	
IPPROTO_SCTP.






listen() flags:



	
SOMAXCONN.






mknod() flags:



	
S_IFCHR.


	
S_IFBLK.






mount() flags:



	
MS_REMOUNT.


	
MS_BIND.


	
MS_SHARED.


	
MS_PRIVATE.


	
MS_SLAVE.


	
MS_UNBINDABLE.


	
MS_MOVE.


	
MS_DIRSYNC.


	
MS_LAZYTIME.


	
MS_MANDLOCK.


	
MS_NOATIME.


	
MS_NODEV.


	
MS_NODIRATIME.


	
MS_NOEXEC.


	
MS_NOSUID.


	
MS_RDONLY.


	
MS_REC.


	
MS_RELATIME.


	
MS_SILENT.


	
MS_STRICTATIME.


	
MS_SYNCHRONOUS.


	
MS_NOSYMFOLLOW.


	
MNT_FORCE.


	
MNT_DETACH.


	
MNT_EXPIRE.


	
MNT_RDONLY.


	
MNT_NOEXEC.


	
MNT_NOSUID.


	
MNT_NOATIME.


	
MNT_SNAPSHOT.


	
MNT_SUIDDIR.


	
MNT_SYNCHRONOUS.


	
MNT_ASYNC.


	
MNT_NOCLUSTERR.


	
MNT_NOCLUSTERW.


	
MNT_NOCOVER.


	
MNT_EMPTYDIR.


	
MNT_UPDATE.


	
MNT_RELOAD.


	
MNT_BYFSID.


	
UMOUNT_NOFOLLOW.






fsopen() flags:



	
FSOPEN_CLOEXEC.






fsconfig() commands:



	
FSCONFIG_SET_FLAG.


	
FSCONFIG_SET_STRING.


	
FSCONFIG_SET_BINARY.


	
FSCONFIG_SET_PATH.


	
FSCONFIG_SET_PATH_EMPTY.


	
FSCONFIG_SET_FD.


	
FSCONFIG_CMD_CREATE.


	
FSCONFIG_CMD_RECONFIGURE.


	
FSCONFIG_CMD_CREATE_EXCL.






fsmount() flags:



	
FSMOUNT_CLOEXEC.






move_mount() flags:



	
MOVE_MOUNT_F_SYMLINKS.


	
MOVE_MOUNT_F_AUTOMOUNTS.


	
MOVE_MOUNT_F_EMPTY_PATH.


	
MOVE_MOUNT_T_SYMLINKS.


	
MOVE_MOUNT_T_AUTOMOUNTS.


	
MOVE_MOUNT_T_EMPTY_PATH.


	
MOVE_MOUNT_SET_GROUP.


	
MOVE_MOUNT_BENEATH.






open_tree() flags:



	
OPEN_TREE_CLONE.


	
OPEN_TREE_CLOEXEC.






fspick() flags:



	
FSPICK_CLOEXEC.


	
FSPICK_SYMLINK_NOFOLLOW.


	
FSPICK_NO_AUTOMOUNT.


	
FSPICK_EMPTY_PATH.






mount_setattr() flags:



	
AT_RECURSIVE.


	
AT_NO_AUTOMOUNT.


	
MOUNT_ATTR_RDONLY.


	
MOUNT_ATTR_NOSUID.


	
MOUNT_ATTR_NODEV.


	
MOUNT_ATTR_NOEXEC.


	
MOUNT_ATTR_NOSYMFOLLOW.


	
MOUNT_ATTR_NODIRATIME.


	
MOUNT_ATTR__ATIME.


	
MOUNT_ATTR_RELATIME.


	
MOUNT_ATTR_NOATIME.


	
MOUNT_ATTR_STRICTATIME.


	
MOUNT_ATTR_IDMAP.






unshare() flags:



	
CLONE_NEWCGROUP.


	
CLONE_NEWIPC.


	
CLONE_NEWNET.


	
CLONE_NEWNS.


	
CLONE_NEWPID.


	
CLONE_NEWTIME.


	
CLONE_NEWUSER.


	
CLONE_NEWUTS.






cap_set_secbits() flags:



	
SECBIT_NOROOT.


	
SECBIT_NOROOT_LOCKED.


	
SECBIT_NO_SETUID_FIXUP.


	
SECBIT_NO_SETUID_FIXUP_LOCKED.


	
SECBIT_KEEP_CAPS.


	
SECBIT_KEEP_CAPS_LOCKED.


	
SECBIT_NO_CAP_AMBIENT_RAISE.


	
SECBIT_NO_CAP_AMBIENT_RAISE_LOCKED.








C.mount_setattr(dirfd: integer, pathname: string|nil, flags: integer, attr: { attr_set: integer, attr_clr: integer, propagation: integer, userns_fd: integer })

          Returns two values:



	
mount_setattr() return.


	
The errno value (or 0 on success).








C.seccomp_set_mode_filter(bpf_fprogram: string) → integer, integer

          Set the secure computing (seccomp) mode for the calling process, to limit the
available system calls. It’s equivalent to:


        const char* bpf_fprogram = ...;
size_t bpf_fprogram_size = ...;

struct sock_fprog prog;
prog.len = bpf_fprogram_size / sizeof(struct sock_filter);
prog.filter = (struct sock_filter*)(bpf_fprogram);
prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);




Use Kafel to generate the BPF bytecode. There’s an Emilua plugin for Kafel
integration.






C.landlock_create_ruleset(attr: table|nil, flags: table|nil) → integer, integer

          Parameters:



	
attr.handled_access_fs: string[]


	
"execute"


	
"write_file"


	
"read_file"


	
"read_dir"


	
"remove_dir"


	
"remove_file"


	
"make_char"


	
"make_dir"


	
"make_reg"


	
"make_sock"


	
"make_fifo"


	
"make_block"


	
"make_sym"


	
"refer"


	
"truncate"








	
flags: string[]


	
"version"












Returns two values:



	
landlock_create_ruleset() return.


	
The errno value (or 0 on success).








C.landlock_add_rule(ruleset_fd: integer, rule_type: "path_beneath", attr: table) → integer, integer

          Parameters:



	
attr.allowed_access: string[]


	
"execute"


	
"write_file"


	
"read_file"


	
"read_dir"


	
"remove_dir"


	
"remove_file"


	
"make_char"


	
"make_dir"


	
"make_reg"


	
"make_sock"


	
"make_fifo"


	
"make_block"


	
"make_sym"


	
"refer"


	
"truncate"








	
attr.parent_fd: integer






Returns two values:



	
landlock_add_rule() return.


	
The errno value (or 0 on success).








C.landlock_restrict_self(ruleset_fd: integer) → integer, integer

          Returns two values:



	
landlock_restrict_self() return.


	
The errno value (or 0 on success).








C.jail_set(params: { [string]: string|boolean }, flags: string[]|nil) → integer, integer

          Create or modify a jail. Optionally locks the current process in it.

Jail parameters are given as strings and they’ll be transparently converted to
the native format accepted by the kernel.

flags may contain the following values:



	
"create"


	
"update"


	
"attach"


	
"dying"






See jail(8) for more information on the core jail parameters.



See also

          

	
spawn_vm(3em)











spawn_context_threads


        
Synopsis

          
        spawn_context_threads(count: integer)




Description

          Spawns extra count threads to the thread pool of the caller VM.



Emilua can handle multiple VMs running on the same thread just
fine. Cooperative multitasking is used to alternate execution among the
ready VMs.






It doesn’t make sense to have more context threads than actors as some threads
will always be idle in this scenario.

No safety-belts will prevent you from running such inefficient layout.









stream.write_all


        
Synopsis

          
        local stream = require "stream"
stream.write_all(io_object, buffer: byte_span|string) -> integer




Description

          Write all of the supplied data to the stream and blocks current fiber until it
completes or errs.

Returns the buffer's size (number of bytes written).

As
in Boost.Asio:



This operation is implemented in terms of zero or more calls to the stream’s
async_write_some function, and is known as a composed operation. The program
must ensure that the stream performs no other write operations (such as
async_write, the stream’s async_write_some function, or any other composed
operations that perform writes) until this operation completes.










stream.write_at_least


        
Synopsis

          
        local stream = require "stream"
stream.write_at_least(io_object, buffer: byte_span, minimum: integer) -> integer




Description

          Write data until a minimum number of bytes has been transferred and blocks
current fiber until it completes or errs.

Returns the number of bytes written.

As
in Boost.Asio:



This operation is implemented in terms of zero or more calls to the stream’s
async_write_some function, and is known as a composed operation. The program
must ensure that the stream performs no other write operations (such as
async_write, the stream’s async_write_some function, or any other composed
operations that perform writes) until this operation completes.










stream.read_all


        
Synopsis

          
        local stream = require "stream"
stream.read_all(io_object, buffer: byte_span) -> integer




Description

          Read data until the supplied buffer is full and blocks current fiber until it
completes or errs.

Returns the buffer's size (number of bytes read).

As
in Boost.Asio:



This operation is implemented in terms of zero or more calls to the stream’s
async_read_some function, and is known as a composed operation. The program
must ensure that the stream performs no other read operations (such as
async_read, the stream’s async_read_some function, or any other composed
operations that perform reads) until this operation completes.










stream.read_at_least


        
Synopsis

          
        local stream = require "stream"
stream.read_at_least(io_object, buffer: byte_span, minimum: integer) -> integer




Description

          Read data until a minimum number of bytes has been transferred and blocks
current fiber until it completes or errs.

Returns the number of bytes read.

As
in Boost.Asio:



This operation is implemented in terms of zero or more calls to the stream’s
async_read_some function, and is known as a composed operation. The program
must ensure that the stream performs no other read operations (such as
async_read, the stream’s async_read_some function, or any other composed
operations that perform reads) until this operation completes.










stream.scanner


        
        local stream = require "stream"
local scanner = stream.scanner.new{ stream = system.in_ }
scanner:get_line()


This class abstracts formatted buffered textual input as an AWK-inspired
scanner. The input stream is broken into records, and each record may be further
broken down into fields.

get_line() is used to get the next record. Surplus data read from the stream
is kept in the buffer to be used in the next call to get_line().

When EOF is found on the stream, the buffered data is returned as the last
record. To differentiate records finished on EOF from records finished on
record_separator, check self.record_terminator.



You may change the parsing rules (e.g. record and field separators) once
get_line() returns.





Line-based protocols

          

Many commonly-used internet protocols are line-based, which means that they have
protocol elements that are delimited by the character sequence
"\r\n". Examples include HTTP, SMTP and FTP.

~ https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/core/line_based.html




To easily parse these protocols, you may set a scanner object with
record_separator="\r\n". Then, get_line() will return a new line each time
it is called. If the field separator/pattern is also specified, the line will be
broken into a table made of the fields.

New buffers will be allocated as more space is needed until a specified maximum
(or an unspecified maximum default).



Combining strategies

          You may also use different parsers & algorithms to consume some parts of the
stream. For instance, HTTP starts as a line-delimited textual protocol. Once the
header section is consumed, the body payload is determined by rules extracted
out of the headers. For "content-length" defined message bodies, you read a
fixed amount of bytes to consume it.

In such scenario, you may use scanner to parse the header section, and, once
it’s time to read the body, use the method buffer() to retrieve already
buffered data. Just be sure to call remove_line() before calling buffer() so
the last line of the header section doesn’t get mixed up with the body. Then
it’ll be a matter of calling stream.read_all(3em) (or
several calls to read_some()) to consume the body.

Once it’s time to parse the header section for the next message in the stream,
you can call set_buffer() to pass the buffered data back to the scanner.



Functions

          
new(opts: table|nil) → scanner

          Set attributes required by scanner.mt, set opts's metatable to
scanner.mt and returns opts. If opts is nil, then a new table is
returned.

You MUST set the stream attribute (before or after the call to new())
before using scanner's methods.

Optional attributes to opts:



	
record_separator: string|regex = "\n"


	
The pattern used to split records.


Regexes must be used with care on streaming content. For instance, if you set
record_separator to the regex /abc(XYZ)?/, it is possible that "XYZ" will
not match just because it wasn’t buffered yet even if it’ll appear in the next
calls to read() on the stream.

Other tools such as GAWK suffer from the same
constraint. Some
regexes engines offer special support when working on streaming content, but
they don’t solve the whole problem as it’d be impossible to differentiate “max
record size reached” from “record_separator not found” if an attempt were made
to use this support.






	
field_separator: string|regex|function|nil


	
If non-nil, defines how to split fields. Otherwise, the whole line/record
is returned as is.
Check regex.split() to understand how fields are separated. In short,
field_separator defines what fields are not.

On functions, the function is used to split the fields out of the line/record
and its return is passed through.



	
field_pattern: regex|nil


	
Defines what fields are (as opposed to
field_separator that defines what fields are not). It must be a regex. Check
regex.patsplit() for details.


	
trim_record: boolean|string = false


	
Whether to strip linear whitespace
(if string is given, then it’ll define the list of whitespace characters) from
the beginning and end of each record.


	
buffer_size_hint: integer|nil


	
The initial size for the buffer. As is the case
for every hint, it might be ignored.


	
max_record_size: integer = unspecified


	
The maximum size for each
record/buffer.








with_awk_defaults(read_stream) → scanner

          Returns a scanner acting on stream that has the semantics from AWK defaults:



	
record_separator


	
"\n"


	
trim_record


	
true


	
field_separator


	
A regex that describes a sequence of linear whitespace.








get_line(self) → byte_span|byte_span[]

          Reads next record buffering any bytes as required and returns it. If
field_separator, or field_pattern were set, the record’s extracted fields
are returned.

It also sets self.record_terminator to the record separator just read. On end
of streams that don’t include the record separator, self.record_terminator
will be set to an empty byte_span (or an empty string if record separator was
specified as a string).

It also increments self.record_number by one on success (it is initially
zero).



buffered_line(self) → byte_span

          Returns current buffered record without extracting its fields. It works like
AWK’s $0 variable.


Precondition


A record must be present in the buffer from a previous call to get_line().






remove_line(self)

          Removes current record from the buffer and sets self.record_terminator to
nil.


Precondition


A record must be present in the buffer from a previous call to get_line().






buffer(self) → byte_span, integer

          Returns the buffer + the offset where the read data begins.



The returned buffer’s capacity may be greater than its length.






set_buffer(self, buf: byte_span[, offset: integer = 1])

          Set buf as the new internal buffer.

buf's capacity will indicate the usable part of the buffer for IO ops and
buf's length (after slicing from offset) will indicate the buffered data.



Previously buffered record and self.record_terminator are discarded.




Listing 4. Example
        local buffered_data = buf:slice(offset)
scanner:set_buffer(buf, offset)








system.arguments


        
Synopsis

          
        local system = require "system"
system.arguments: string[]




Description

          Arguments passed on the CLI (a.k.a. ARGV). First element in the table is emilua
binary path. Second element is the script path. Rest of the elements are
anything passed after "--" in the command line.






system.environment


        
Synopsis

          
        local system = require "system"
system.environment: { [string]: string }




Description

          The environment variables.






system.in_


        
Synopsis

          
        local system = require "system"
system.in_




Functions

          
read_some(self, buffer: byte_span) → integer

          Read data from stdin and blocks current fiber until it completes or errs.

Returns the number of bytes read.



First argument is ignored and it’s only there to make it have a
stream-like interface.






dup(self) → file_descriptor

          Creates a new file descriptor that refers to STDIN_FILENO.



dup_from(self, oldd: file_descriptor)

          Same as dup2(oldd, STDIN_FILENO). Useful to redirect standard streams.

oldd is not closed by this call.



Only the master VM is allowed to use this function.






If you want to close the standard stream, replace it by a closed pipe
instead. That’s safer.






isatty(self) → boolean

          See isatty(3).



tcgetpgrp(self) → integer

          See tcgetpgrp(3).



tcsetpgrp(self, pgid_id: integer)

          See tcsetpgrp(3).







system.out


        
Synopsis

          
        local system = require "system"
system.out




Functions

          
write_some(self, buffer: byte_span) → integer

          Write data to stdout and blocks current fiber until it completes or errs.

Returns the number of bytes written.



First argument is ignored and it’s only there to make it have a
stream-like interface.






dup(self) → file_descriptor

          Creates a new file descriptor that refers to STDOUT_FILENO.



dup_from(self, oldd: file_descriptor)

          Same as dup2(oldd, STDOUT_FILENO). Useful to redirect standard streams.

oldd is not closed by this call.



Only the master VM is allowed to use this function.






If you want to close the standard stream, replace it by a closed pipe
instead. That’s safer.






isatty(self) → boolean

          See isatty(3).



tcgetpgrp(self) → integer

          See tcgetpgrp(3).



tcsetpgrp(self, pgid_id: integer)

          See tcsetpgrp(3).







system.err


        
Synopsis

          
        local system = require "system"
system.err




Functions

          
write_some(self, buffer: byte_span) → integer

          Write data to stderr and blocks current fiber until it completes or errs.

Returns the number of bytes written.



First argument is ignored and it’s only there to make it have a
stream-like interface.






dup(self) → file_descriptor

          Creates a new file descriptor that refers to STDERR_FILENO.



dup_from(self, oldd: file_descriptor)

          Same as dup2(oldd, STDERR_FILENO). Useful to redirect standard streams.

oldd is not closed by this call.



Only the master VM is allowed to use this function.






If you want to close the standard stream, replace it by a closed pipe
instead. That’s safer.






isatty(self) → boolean

          See isatty(3).



tcgetpgrp(self) → integer

          See tcgetpgrp(3).



tcsetpgrp(self, pgid_id: integer)

          See tcsetpgrp(3).







system.caph_limit_stdio


        
Synopsis

          
        local system = require "system"
system.caph_limit_stdio()




Description

          See capsicum_helpers(3).



Only the master VM is allowed to use this function.









system.get_lowfd


        
Synopsis

          
        local system = require "system"
system.get_lowfd(fd: integer) -> file_descriptor|nil




Description

          If fd is a number between 3 and 9 (inclusive) and the process inherited this
numbered file descriptor, returns it as file_descriptor object.

Once a file_descriptor is returned, it’s consumed from the runtime’s internal
registry, and this function will return nil on that point forward if called
with the same argument.



This function is useful to implement FD3-based protocols such as systemD’s
socket activation and Varlink.






Only the master VM is allowed to use this function.









system.get_ld_library_directories


        
Synopsis

          
        local system = require "system"
system.get_ld_library_directories() -> file_descriptor[]




Description

          Obtains and returns a list of file descriptors using the following method:



	
Query RTLD_DI_SERINFO for the executable, ignoring repeated paths.


	
Open the directories for the query’s results, ignoring any that fails.


	
If the calling process was spawned from Emilua using spawn_vm(), also
acquire duplicates from the file descriptors sent through the parameter
subprocess.ld_library_directories.








Future directions

          New parameters might be added in the future to control the value returned by
this function.






libc_service


        
Synopsis

          
        local libc_service = require "libc_service"




Functions

          
new() → libc_service.master, libc_service.slave

          Creates a new communication channel to proxy calls to libc. The master end is
used to receive requests to ambient authority resources. The slave end must be
sent to a process where ambient authority has been disabled (e.g. FreeBSD’s
Capsicum) and libc functions have been overridden (e.g. runtime loader or linker
tricks[45]) to use the proxy.



libc_service is not a syscall firewall. It’s not a security feature that
blocks access to system resources. It’s merely a compatibility tool that
translates classic POSIX interfaces to run in a system designed around the
capability-based security model (e.g. FreeBSD’s Capsicum).

This translation service is useful to make use of system libraries where it’s
not feasible (nor desirable) to reimplement legacy code from scratch.









If your binary is linked against libemilua-libc-service then these tricks are already in place and ready to use. Nothing more to be done on your part.









libc_service.master


        
Synopsis

          
        local libc_service = require "libc_service"


The master arbiters calls to libc that are related to ambient authority in the
process holding the slave end. Before a call to the real libc is attempted in
the slave end, the process forwards the request to the master and blocks the
thread until a reply is received.

The protocol follows the request-reply model. Low-level protocol details are
hidden by the Emilua runtime and the Lua programmer only sees a request-reply
API.

Multiplexing is not allowed. That means only one thread from the slave end can
be served at anytime and this layout will minimize the opportunity for possible
parallelism if the process holding the slave end makes too many calls for
ambient authority access. As a hidden implementation detail, Emilua will
transparently pipeline requests from different threads to minimize latency a
little.



Functions

          
receive(self)

          Receive the next attempted libc call for ambient authority.

Data about the call is stored in the object’s properties.



send(self, result: value, errno: integer|generic_error|system_error = 0)

          Send the result for the currently arbitrated libc call.










	Function
	result





	open

	integer




	openat

	integer




	unlink

	integer




	rename

	integer




	stat, lstat

	On error, it should be the number -1.

On success, it should be an object (table) with the following properties:



	
dev: number


	
Device ID.


	
ino: number


	
Inode number.


	
mode: number


	
File access mode bits.


	
type: "regular"|"directory"|"symlink"|"block"|"character"|"fifo"|"socket"


	
File type.


	
nlink: number


	
Number of hardlinks.


	
uid: number


	
User ID of owner.


	
gid: number


	
Group ID of owner.


	
rdev: number


	
Like dev, but for special files.


	
size: number


	
Total size, in bytes.


	
atime: filesystem.clock.time_point


	
The time of the last access.


	
mtime: filesystem.clock.time_point


	
The time of the last modification.


	
ctime: filesystem.clock.time_point


	
The time of the last status change.


	
blksize: number


	
Block size for filesystem I/O.


	
blocks: number


	
Number of blocks allocated.










	access, eaccess

	integer




	mkdir

	integer




	rmdir

	integer




	connect_unix

	integer




	connect_inet

	integer




	connect_inet6

	integer




	bind_unix

	integer




	bind_inet

	integer




	bind_inet6

	integer




	getaddrinfo

	On error, it should be one of the strings below:



	
"again"


	
"badflags"


	
"fail"


	
"family"


	
"memory"


	
"noname"


	
"service"


	
"socktype"


	
"system"






On success, it should be an array with the following members (in the same
order):



	
ip: ip.address


	
The address the query resolved to.


	
service: integer|nil


	
The service port the query resolved to.






Alternatively, if the call should succeed with a reply of 0 elements (a valid
scenario for DNS and getaddrinfo()), the the value nil can be used instead.













send_with_fds(self, result: value, fds: file_descriptor[], errno: integer|generic_error|system_error = 0)

          Send the result for the currently arbitrated libc call.










	Function
	result





	open

	integer




	openat

	integer




	unlink

	integer




	rename

	integer




	stat, lstat

	On error, it should be the number -1.

On success, it should be an object (table) with the following properties:



	
dev: number


	
Device ID.


	
ino: number


	
Inode number.


	
mode: number


	
File access mode bits.


	
type: "regular"|"directory"|"symlink"|"block"|"character"|"fifo"|"socket"


	
File type.


	
nlink: number


	
Number of hardlinks.


	
uid: number


	
User ID of owner.


	
gid: number


	
Group ID of owner.


	
rdev: number


	
Like dev, but for special files.


	
size: number


	
Total size, in bytes.


	
atime: filesystem.clock.time_point


	
The time of the last access.


	
mtime: filesystem.clock.time_point


	
The time of the last modification.


	
ctime: filesystem.clock.time_point


	
The time of the last status change.


	
blksize: number


	
Block size for filesystem I/O.


	
blocks: number


	
Number of blocks allocated.










	access, eaccess

	integer




	mkdir

	integer




	rmdir

	integer




	connect_unix

	integer




	connect_inet

	integer




	connect_inet6

	integer




	bind_unix

	integer




	bind_inet

	integer




	bind_inet6

	integer




	getaddrinfo

	On error, it should be one of the strings below:



	
"again"


	
"badflags"


	
"fail"


	
"family"


	
"memory"


	
"noname"


	
"service"


	
"socktype"


	
"system"






On success, it should be an array with the following members (in the same
order):



	
ip: ip.address


	
The address the query resolved to.


	
service: integer|nil


	
The service port the query resolved to.






Alternatively, if the call should succeed with a reply of 0 elements (a valid
scenario for DNS and getaddrinfo()), the the value nil can be used instead.













use_slave_credentials(self)

          Forward the request to the real libc running in the slave end.



arguments(self) → value…​

          The arguments passed to the last requested call.

The arguments depend on the called function (see the property function_
below).



	
open


	


	
path: filesystem.path


	
The file path.


	
flags: string[]


	
The open flags.
flags may contain:



	
"append"


	
Open the file in append mode.


	
"create"


	
Create the file if it does not exist.


	
"directory"


	
If pathname is not a directory, cause the open to fail.


	
"exclusive"


	
Ensure a new file is created. Must be combined with create.


	
"no_follow"


	
Fail if path resolves to a symbolic link.


	
"path"


	
Get a stable reference to an inode without actually opening the
contents.


	
"read_only"


	
Open the file for reading.


	
"read_write"


	
Open the file for reading and writing.


	
"sync_all_on_write"


	
Open the file so that write operations automatically
synchronise the file data and metadata to disk
(FILE_FLAG_WRITE_THROUGH/O_SYNC).


	
"temporary"


	
Create an unnamed temporary regular file.


	
"truncate"


	
Open the file with any existing contents truncated.


	
"write_only"


	
Open the file for writing.








	
mode: integer


	
Optional argument. Only present if "create" or
"temporary" appear in flags.








	
openat


	


	
path: filesystem.path


	
The file path.


	
flags: string[]


	
The open flags.
flags may contain:



	
"append"


	
Open the file in append mode.


	
"create"


	
Create the file if it does not exist.


	
"directory"


	
If pathname is not a directory, cause the open to fail.


	
"exclusive"


	
Ensure a new file is created. Must be combined with create.


	
"no_follow"


	
Fail if path resolves to a symbolic link.


	
"path"


	
Get a stable reference to an inode without actually opening the
contents.


	
"read_only"


	
Open the file for reading.


	
"read_write"


	
Open the file for reading and writing.


	
"sync_all_on_write"


	
Open the file so that write operations automatically
synchronise the file data and metadata to disk
(FILE_FLAG_WRITE_THROUGH/O_SYNC).


	
"temporary"


	
Create an unnamed temporary regular file.


	
"truncate"


	
Open the file with any existing contents truncated.


	
"write_only"


	
Open the file for writing.


	
"resolve_beneath"


	
Path resolution must not cross the fd directory.


	
"resolve_in_root"


	
Treat the directory referred to by dirfd as the root
directory while resolving pathname. Absolute symbolic links are interpreted
relative to dirfd.


	
"resolve_no_magiclinks"


	
Disallow all magic-link resolution during path
resolution.


	
"resolve_no_symlinks"


	
Disallow resolution of symbolic links during path
resolution.


	
"resolve_no_xdev"


	
Disallow traversal of mount points during path
resolution (including all bind mounts).


	
"resolve_cached"


	
Make the open operation fail unless all path components
are already present in the kernel’s lookup cache.








	
mode: integer


	
Optional argument. Only present if "create" or
"temporary" appear in flags.








	
unlink


	


	
path: filesystem.path


	
The file path.








	
rename


	


	
path1: filesystem.path


	
The file1 path.


	
path2: filesystem.path


	
The file2 path.








	
stat


	
lstat


	


	
path: filesystem.path


	
The file path.








	
access


	
eaccess


	


	
path: filesystem.path


	
The file path.


	
amode: "f"|string[]


	
Requested access mode.
It’s either "f", or an array of strings that may contain:



	
"r"


	
R_OK. Read permission.


	
"w"


	
W_OK. Write permission.


	
"x"


	
X_OK. Execute permission.














	
mkdir


	


	
path: filesystem.path


	
The file path.


	
mode: integer


	
File access mode bits.








	
rmdir


	


	
path: filesystem.path


	
The file path.








	
connect_unix


	


	
path: filesystem.path


	
The UNIX socket path.








	
connect_inet


	


	
ipv4_addr: ip.address


	
The IPv4 address.


	
port: integer


	
The port.








	
connect_inet6


	


	
ipv6_addr: ip.address


	
The IPv6 address.


	
port: integer


	
The port.








	
bind_unix


	


	
path: filesystem.path


	
The UNIX socket path.








	
bind_inet


	


	
ipv4_addr: ip.address


	
The IPv4 address.


	
port: integer


	
The port.








	
bind_inet6


	


	
ipv6_addr: ip.address


	
The IPv6 address.


	
port: integer


	
The port.








	
getaddrinfo


	


	
node: string


	
An Internet host such as host.example.


	
service: string


	
An Internet service such as http.


	
protocol: "tcp"|"udp"|nil


	
An Internet protocol. Only really useful if
you’re resolving the service as well.














descriptors(self) → file_descriptor…​

          Extract and return the file descriptors received with the last requested call.



Once you call this function, the returned descriptors no longer stay
stored in this object. IOW, a second call to this function will always return
nothing.







Properties

          
function_: string

          The last requested call.

Possible values:



	
"open"


	
"openat"


	
"unlink"


	
"rename"


	
"stat"


	
"lstat"


	
"access"


	
"eaccess"


	
"mkdir"


	
"rmdir"


	
"connect_unix"


	
"connect_inet"


	
"connect_inet6"


	
"bind_unix"


	
"bind_inet"


	
"bind_inet6"


	
"getaddrinfo"












libc_service.slave


        
Synopsis

          
        local libc_service = require "libc_service"


The handle to the slave end’s initialization data. When the handle is used in
some function, it’s consumed and can no longer be used in different calls. The
resources associated with the handle will be sent to the process created by the
function that consumes this handle.

You cannot configure properties from this handle after a call that consumes it
(e.g. spawn_vm()). If some setting is desired, it must be prepared before the
call that consumes this object.



Metamethods

          
__newindex()

          Assigns a Lua chunk (the source code as a string) to run on the slave end when
the libc function (identified by the key) is attempted. The Lua function will be
called with the proxified libc function as the first argument (before the
arguments that were passed to the attempted libc function call). If no Lua
function is assigned and the libc function is called, the proxified libc
function will be called directly.

The Lua function has access to the same API that is available to
init.script(3em). However errexit will be false by
default.



[image: libc service filters]



Whether the proxified function forwards the request to the real libc depends on
libc_service.master's reply. If the Lua chunk never calls the proxified
function, then the proxified function never even runs.




Available Lua filters

          This section lists the Lua filters you can implement to run when an interposed
libc function is called.


open(real_open: function, path: string, flags: integer[, mode: integer]) → integer[, integer]

          Returns:



	
The value for open()'s return.


	
Optional: The value for errno.








openat(real_openat: function, dirfd: integer, path: string, flags: integer, mode: integer, resolve: string[]) → integer[, integer]

          mode will be 0 on unused.

resolve will be translated to whatever the current system uses under the hood
(e.g. openat2() on Linux). Unsupported values won’t be silently ignored. If
some flag is unsupported, the function will return with an error. It may
contain:



	
"beneath"


	
Path resolution must not cross the fd directory.


	
"in_root"


	
Treat the directory referred to by dirfd as the root directory
while resolving pathname. Absolute symbolic links are interpreted relative to
dirfd.


	
"no_magiclinks"


	
Disallow all magic-link resolution during path resolution.


	
"no_symlinks"


	
Disallow resolution of symbolic links during path resolution.


	
"no_xdev"


	
Disallow traversal of mount points during path resolution
(including all bind mounts).


	
"cached"


	
Make the open operation fail unless all path components are already
present in the kernel’s lookup cache.






Returns:



	
The value for openat()'s return.


	
Optional: The value for errno.








unlink(real_unlink: function, path: string) → integer[, integer]

          Returns:



	
The value for unlink()'s return.


	
Optional: The value for errno.








rename(real_rename: function, path1: string, path2: string) → integer[, integer]

          Returns:



	
The value for rename()'s return.


	
Optional: The value for errno.








stat(real_stat: function, path: string) → integer|table[, integer]

          Returns:



	
The value for stat()'s return. Or Lua table on success (return 0).


	
Optional: The value for errno.








lstat(real_lstat: function, path: string) → integer|table[, integer]

          Returns:



	
The value for lstat()'s return. Or Lua table on success (return 0).


	
Optional: The value for errno.








access(real_access: function, path: string, amode: integer) → integer[, integer]

          Returns:



	
The value for access()'s return.


	
Optional: The value for errno.








eaccess(real_eaccess: function, path: string, amode: integer) → integer[, integer]

          Returns:



	
The value for eaccess()'s return.


	
Optional: The value for errno.








mkdir(real_mkdir: function, path: string, mode: integer) → integer[, integer]

          Returns:



	
The value for mkdir()'s return.


	
Optional: The value for errno.








rmdir(real_rmdir: function, path: string) → integer[, integer]

          Returns:



	
The value for rmdir()'s return.


	
Optional: The value for errno.








connect_unix(real_connect: function, fd: integer, path: string) → integer[, integer]

          Returns:



	
The value for connect()'s return.


	
Optional: The value for errno.








connect_inet(real_connect: function, fd: integer, ipv4_addr: integer[], port: integer) → integer[, integer]

          Returns:



	
The value for connect()'s return.


	
Optional: The value for errno.








connect_inet6(real_connect: function, fd: integer, ipv6_addr: integer[], port: integer, scope_id: integer) → integer[, integer]

          Returns:



	
The value for connect()'s return.


	
Optional: The value for errno.








bind_unix(real_bind: function, fd: integer, path: string) → integer[, integer]

          Returns:



	
The value for bind()'s return.


	
Optional: The value for errno.








bind_inet(real_bind: function, fd: integer, ipv4_addr: integer[], port: integer) → integer[, integer]

          Returns:



	
The value for bind()'s return.


	
Optional: The value for errno.








bind_inet6(real_bind: function, fd: integer, ipv6_addr: integer[], port: integer, scope_id: integer) → integer[, integer]

          Returns:



	
The value for bind()'s return.


	
Optional: The value for errno.








getaddrinfo(real_getaddrinfo: function, node: string, service: string, protocol: "tcp"|"udp"|nil) → …​

          To indicate failure, this function should return one of strings below or some
equivalent integer code:



	
"again"


	
"badflags"


	
"fail"


	
"family"


	
"memory"


	
"noname"


	
"service"


	
"socktype"


	
"system"






If "system" is returned, another integer value for errno should follow.

To indicate success without any resolved address, the function should return
just nil.

To indicate success with a resolved address, the function should return the
following values:



	
nil


	
It’s here just to disambiguate against other cases.


	
ip_addr: integer[]


	
On IPv6 addresses, it should include an extra integer at the end for the scope
ID.


	
port: integer


	
The port.












system.exit


        
Synopsis

          
        local system = require "system"
system.exit([code: integer = 0 [, opts: table]])




Description

          Exit the VM. Other VMs in the process are not stopped.



Parameters

          
code

          If caller is the main VM, code is used as the application exit code.



opts

          If caller is the main VM, then opts is a table that accepts the following
options:



	
force: 0|1|2|"abort" = 0


	


	
0


	
Nothing.


	
1


	
Not implemented yet.


	
2


	
Exit the process forcefully (little to none cleanup steps are
performed).


	
"abort"


	
Exit the process even more forcefully (equivalent to the C
function abort()).


















system.signal


        
Synopsis

          
        local system = require "system"
system.signal: table




Constants

          

	
SIGABRT.


	
SIGFPE.


	
SIGILL.


	
SIGINT.


	
SIGSEGV.


	
SIGTERM.








UNIX constants

          

Availability depending on the host system.






	
SIGALRM.


	
SIGBUS.


	
SIGCHLD.


	
SIGCONT.


	
SIGHUP.


	
SIGIO.


	
SIGKILL.


	
SIGPIPE.


	
SIGPROF.


	
SIGQUIT.


	
SIGSTOP.


	
SIGSYS.


	
SIGTRAP.


	
SIGTSTP.


	
SIGTTIN.


	
SIGTTOU.


	
SIGURG.


	
SIGUSR1.


	
SIGUSR2.


	
SIGVTALRM.


	
SIGWINCH.


	
SIGXCPU.


	
SIGXFSZ.








Windows constants

          

Availability depending on the host system.






	
SIGBREAK.








Signal handling also works on Windows, as the Microsoft Visual C++ runtime
library maps console events like Ctrl+C to the equivalent signal.









system.signal.raise


        
Synopsis

          
        local system = require "system"
system.signal.raise(signal: integer)




Description

          Sends a signal to the calling process.






system.signal.set


        
        local set = system.signal.set.new(system.signal.SIGTERM, system.signal.SIGINT)
set:wait()


This class provides the ability to wait for one or more signals to occur.


Multiple registration of signals


As
in Boost.Asio (translated to fibers/emilua lingo):



The same signal number may be registered with different [set] objects. When
the signal occurs, one [signal notification is queued] for each [set] object.









Functions

          
new([sig1: integer, …​]) → system.signal.set

          Constructor.

Arguments are treated as signals to be added to the set.



Only the main VM on the process may create new set objects. If the VM
elects another VM to be the new main VM, its old set objects will remain valid
and working, but the VM won’t be able to create new set objects.






add(self, signal: integer)

          Add a signal to the set.



Only the master VM is allowed to use this function.






remove(self, signal: integer)

          Remove a signal from the set.



clear(self)

          Remove all signals from the set.



cancel(self)

          Cancel all operations associated with the set.



wait(self) → integer

          Wait for a signal to be delivered. The function will return when:



	
One of the registered signals in the set occurs; or


	
The set was cancelled, in which case the function will raise the exception
boost::asio::error::operation_aborted.






A number is returned to indicate which signal occurred.


Queueing of signal notifications


As
in Boost.Asio (translated to fibers/emilua lingo):



If a signal is registered with a [set], and the signal occurs when there are
no [calls to wait()], then the signal notification is queued. The next [call
to wait() on that set] will dequeue the notification. If multiple
notifications are queued, subsequent [wait() calls] dequeue them one at a
time. Signal notifications are dequeued in order of ascending signal number.

If a signal number is removed from a [set] (using the [remove() member
function]) then any queued notifications for that signal are discarded.














system.signal.ignore


        
Synopsis

          
        local system = require "system"
system.signal.ignore(signal: integer)




Description

          Ignore signal.



This function will fail if you try to ignore a signal for which a
system.signal.set object exists.






Only the master VM is allowed to use this function.






This function is only available to POSIX systems.









system.signal.default


        
Synopsis

          
        local system = require "system"
system.signal.default(signal: integer)




Description

          Reset signal's handling to the system’s default.



There’s no need to set the default handlers at the start of the
program. The Emilua runtime will already do that for you.






This function will fail if you try to reset a signal for which a
system.signal.set object exists.






Only the master VM is allowed to use this function.






This function is only available to POSIX systems.









system.spawn


        
Synopsis

          
        local system = require "system"
system.spawn(opts: table) -> subprocess




Description

          Creates a new process.


Named parameters

          

	
program: string|filesystem.path|file_descriptor


	


	
string


	
A simple filename. The system searches for this file in the list of
directories specified by PATH (in the same way as for execvp(3)).


	
filesystem.path


	
The path (which can be absolute or relative) of the
executable.


	
file_descriptor


	
A file descriptor to the executable. See fexecve(3).








	
arguments: string[]|nil


	
A table of strings that will be used as the created
process' argv. On nil, an empty argv will be used.


Don’t forget to include the name of the program as the first argument.






	
environment: { [string]: string }|nil


	
A table of strings that will be used
as the created process' envp. On nil, an empty envp will be used.
If "\0pid" is used as the value for an environment variable, the value will be
replaced by the pid of the child. This is useful to implement some FD3-based
protocols that use variables such as LISTEN_PID for robustness. Only one
environment variable may use the value "\0pid".



	
stdin,stdout,stderr: "share"|file_descriptor|nil


	


	
"share"


	
The spawned process will share the specified standard handle (stdin, stdout,
or stderr) with the caller process.


	
file_descriptor


	
Use the file descriptor as the specified standard handle (stdin, stdout, or
stderr) for the spawned process.


	
nil


	
Create and use a closed pipe end as the specified standard handle (stdin,
stdout, or stderr) for the spawned process.


On Windows, it’s unspecified (will vary depending on whether any
redirection is done at all, dwCreationFlags's value, etc).












	
extra_fds: { [integer]: file_descriptor|libc_service.slave }|nil


	
Extra file descriptors for the child to inherit. Parent and child processes
don’t need to share the same numeric value reference for a given file
description. The file descriptor number used in the child process will be the
one specified in the key portion of the dictionary argument. Only file
descriptors numbered from 3 to 9 are acceptable (i.e. the same limitations
of low fds that you’re likely to face on older UNIX shells). If you need to pass
more than 10 file descriptors — stdin, stdout, stderr, plus these extra 7 file
descriptors — use another interface (e.g. SCM_RIGHTS).


Not available on Windows.






	
signal_on_gcreaper: integer = system.signal.SIGTERM


	
Each process is responsible for reaping its own children. A process that fails
to reap its children will soon exhaust its OS-provided resources. For
short-lived programs that’s hardly a problem given the process quits and its
children are re-parented to the next subreaper in the chain (usually the init
process). However for a concurrency runtime such as Emilua we expect other
concurrent tasks to remain unaffected by the one failing task (be it a single
fiber or the whole VM).  Emilua will then transparently reap any child process
for which its handle has been GC’ed. signal_on_gcreaper allows the user to
specify a signal to be sent to the child that’s about to be reaped at this
occasion.
By default, the signal system.signal.SIGTERM will be sent to the child and
then the main Emilua process will — indefinitely, non-blockingly, and
non-pollingly — await for all of its children to finish even if there’s no
longer any Lua program being executed. Use the more dangerous
system.signal.SIGKILL if you don’t want the main Emilua process to wait long
for the child. Use 0 if you don’t want the Emilua reaper to send any signal
before awaiting for the child.



Ideally the system kernel would expose some re-parent syscall, but until
then (if ever), signal_on_gcreaper will be necessary.






Only available on Linux.






	
pd_daemon: boolean = see-below


	
Instead of the default terminate-on-close behaviour, allow the process to live
until it is explicitly killed with kill(2).
By default, it’s true unless the parent process is in capability mode (see
cap_enter(2)).



Only available on FreeBSD.






	
scheduler.policy: string|nil


	
Values acceptable on Linux for non-real-time policies are:


	
"other"


	
See SCHED_OTHER.


	
"batch"


	
See SCHED_BATCH.


	
"idle"


	
See SCHED_IDLE.






Values acceptable on Linux for real-time policies are:



	
"fifo"


	
See SCHED_FIFO. Must also set scheduler.priority.


	
"rr"


	
See SCHED_RR. Must also set scheduler.priority.








Not available on Windows.






	
scheduler.priority: integer|nil


	
The interpretation of this parameter is dependant on scheduler.policy.


Not available on Windows.






	
scheduler.reset_on_fork: boolean = false


	
If true, grandchildren created as a result of a call to fork(2) from the
direct child will not inherit privileged scheduling policies. If set, must also
set scheduler.policy.


Not available on Windows.






	
start_new_session: boolean = false


	
Whether to create a new session and become the session leader. On true, calls
setsid() on the child.


On Windows, DETACHED_PROCESS|CREATE_NEW_PROCESS_GROUP is used in
creation flags.






	
set_ctty: file_descriptor|nil


	
Set the controlling terminal for the child. It is an error to specify
set_ctty, but omit start_new_session.


It’s an error to specify both set_ctty and foreground.






Not available on Windows.






	
process_group: integer|nil


	
Set the process group (it calls setpgid() on the child). On 0, the child’s
process group ID is made the same as its process ID.


On Windows, only 0 is supported (CREATE_NEW_PROCESS_GROUP is used in
creation flags).






	
foreground: "stdin"|"stdout"|"stderr"|file_descriptor|nil


	
Make the child be the foreground job for the specified controlling terminal by
calling tcsetpgrp() (SIGTTOU will be blocked for the duration of the call).
It is an error to specify foreground, but omit process_group.


"stdin", "stdout", and "stderr" can only be specified if parent and
child share the same file for the specified standard handle.






It’s an error to specify both foreground and set_ctty.






Not available on Windows.






	
ruid: integer|nil


	
Set the real user ID.


Not available on Windows.






	
euid: integer|nil


	
Set the effective user ID. If the set-user-ID permission bit is enabled on the
executable file, its effect will override this setting (see execve(2)).


Not available on Windows.






	
rgid: integer|nil


	
Set the real group ID.


Not available on Windows.






	
egid: integer|nil


	
Set the effective group ID. If the set-group-ID permission bit is enabled on the
executable file, its effect will override this setting (see execve(2)).


Not available on Windows.






	
extra_groups: integer[]|nil


	
Set the supplementary group IDs.


Not available on Windows.






	
set_no_new_privs: boolean = false


	
Set the no_new_privs attribute.


Not available on Windows.






	
seccomp_set_mode_filter: byte_span|nil


	
Set the secure computing (seccomp) mode to limit the available system calls.


Only available on Linux.






	
landlock_restrict_self: file_descriptor|nil


	
Enforce a Landlock ruleset.


Only available on Linux.






	
umask: integer|nil


	
See umask(3p).


Not available on Windows.






	
working_directory: filesystem.path|file_descriptor|nil


	
Sets the working directory for the spawned program.


	
pdeathsig: integer|nil


	
Signal that the process will get when its parent dies. If the executable file
contains set-user-ID, set-group-ID, or contains associated capabilities,
pdeathsig will be cleared.


“Parent” is a difficult term to define here. For Linux, that’s not the
process, but the thread. For Emilua, the thread will exist for at least as long
as the calling Lua VM exists (even if the Lua VM might jump between
threads). The thread will also exist for even longer, for as long as other Lua
VMs are using it.






Not available on Windows.






	
setns_user: file_descriptor|nil


	
Enter in this Linux user namespace. When setns_user is specified, Emilua
always enter in the user namespace before any other namespace.


Only available on Linux.






	
setns_mount: file_descriptor|nil


	
Enter in this Linux mount namespace.


Only available on Linux.






	
setns_uts: file_descriptor|nil


	
Enter in this Linux UTS namespace.


Only available on Linux.






	
setns_ipc: file_descriptor|nil


	
Enter in this Linux IPC namespace.


Only available on Linux.






	
setns_net: file_descriptor|nil


	
Enter in this Linux net namespace.


Only available on Linux.






	
show_window: "hide"|"shownormal"|"normal"|"showminimized"|"showmaximized"|"maximize"|"shownoactivate"|"show"|"minimize"|"showminnoactive"|"showna"|"restore"|"forceminimize"|nil


	
If present, STARTUPINFO.dwFlags will include STARTF_USESHOWWINDOW, and
STARTUPINFO.wShowWindow will be initialized with the indicated value.


Only available on Windows.






	
create_breakaway_from_job: boolean = false


	


Only available on Windows.






	
create_new_console: boolean = false


	


Only available on Windows.






	
create_no_window: boolean = false


	


Only available on Windows.






	
detached_process: boolean = false


	


Only available on Windows.













subprocess functions

          
wait(self)

          Wait for the process to finish, and then reap it. Information regarding
termination status is stored in exit_code and exit_signal.



If your code fails to call wait(), the Emilua runtime will reap the
process in your stead as soon as the GC collects self and the underlying
subprocess finishes. It’s important to reap children processes to free
OS-associated resources.






kill(self, signal: integer)

          Send a signal to the process.



You may specify 0 (the null signal) to not send any signal, but still let
the OS to perform permission checks (reported as raised errors).






cap_get(self) → system.linux_capabilities

          See cap_get_pid(3).




subprocess properties

          
exit_code: integer

          The process return code as passed to exit(3). If the process was terminated by a
signal, this will be 128 + exit_signal (as done in BASH).



You can only access this field for wait()'ed processes.






exit_signal: integer|nil

          The signal that terminated the process. If the process was not terminated by a
signal, this will be nil.



You can only access this field for wait()'ed processes.






pid: integer|nil

          The process id used by the OS to represent this child process (e.g. the number
that shows up in /proc on some UNIX systems).

For wait()'ed processes, value is nil.




Bugs

          Windows properly supports line-breaks in arguments. However if you’re running
a .bat or a .cmd file, there’s a bug in CMD.exe that stops parsing the
command line at the line-break. This is a bug in Windows. To fix this bug, you
need to install TCC-RT from JP Software (or another CMD.exe replacement such
as wineconsole) and set COMSPEC to this new interpreter. Microsoft won’t fix
this bug.






system.getresuid


        
Synopsis

          
        local system = require "system"
system.getresuid() -> integer, integer, integer




Description

          Returns the real UID, the effective UID, and the saved set-user-ID of the
calling process, respectively.






system.getresgid


        
Synopsis

          
        local system = require "system"
system.getresgid() -> integer, integer, integer




Description

          Returns the real GID, the effective GID, and the saved set-group-ID of the
calling process, respectively.






system.setresuid


        
Synopsis

          
        local system = require "system"
system.setresuid(ruid: integer, euid: integer, suid: integer)




Description

          Sets the real UID, the effective UID, and the saved set-user-ID of the calling
process.

If one of the arguments equals -1, the corresponding value is not changed.



Only the master VM is allowed to use this function.









system.setresgid


        
Synopsis

          
        local system = require "system"
system.setresgid(rgid: integer, egid: integer, sgid: integer)




Description

          Sets the real GID, the effective GID, and the saved set-group-ID of the calling
process.

If one of the arguments equals -1, the corresponding value is not changed.



Only the master VM is allowed to use this function.









system.getgroups


        
Synopsis

          
        local system = require "system"
system.getgroups() -> integer[]




Description

          Returns the current supplementary group IDs of the calling process. It is
unspecified whether getgroups() also returns the effective group ID in the
list.






system.setgroups


        
Synopsis

          
        local system = require "system"
system.setgroups(groups: integer[])




Description

          Sets the supplementary group IDs for the calling process.



Only the master VM is allowed to use this function.









system.set_no_new_privs


        
Synopsis

          
        local system = require "system"
system.set_no_new_privs()




Description

          Set the no_new_privs attribute for the calling process (i.e. threads are
synchronized even on Linux).



Only the master VM is allowed to use this function.






Bugs

          There’s a libpsx bug that prevents thread synchronization to work:
https://bugzilla.kernel.org/show_bug.cgi?id=218607.



You may use system.seccomp_set_mode_filter() afterwards to synchronize
the no_new_privs bit in all threads.









system.linux_capabilities


        
        local system = require "system"
local caps = system.cap_init()
caps:set_proc()
system.cap_reset_ambient()



Functions

          
cap_get_proc() → linux_capabilities

          See cap_get_proc(3).



cap_init() → linux_capabilities

          See cap_init(3).



cap_from_text(caps: string) → linux_capabilities

          See cap_from_text(3).



cap_get_bound(cap: string) → boolean

          See cap_get_bound(3).



cap_drop_bound(cap: string)

          See cap_drop_bound(3).



Only the master VM is allowed to use this function.






cap_get_ambient(cap: string) → boolean

          See cap_get_ambient(3).



cap_set_ambient(cap: string, value: boolean)

          See cap_set_ambient(3).



Only the master VM is allowed to use this function.






cap_reset_ambient()

          See cap_reset_ambient(3).



Only the master VM is allowed to use this function.






cap_get_secbits() → integer

          See cap_get_secbits(3).



cap_set_secbits(bits: integer)

          See cap_set_secbits(3).

The securebits flag constants are available from the system table:



	
SECBIT_NOROOT


	
SECBIT_NOROOT_LOCKED


	
SECBIT_NO_SETUID_FIXUP


	
SECBIT_NO_SETUID_FIXUP_LOCKED


	
SECBIT_KEEP_CAPS


	
SECBIT_KEEP_CAPS_LOCKED


	
SECBIT_NO_CAP_AMBIENT_RAISE


	
SECBIT_NO_CAP_AMBIENT_RAISE_LOCKED








Only the master VM is allowed to use this function.






dup(self) → linux_capabilities

          See cap_dup(3).



clear(self)

          See cap_clear(3).



clear_flag(self, flag: string)

          See cap_clear_flag(3).



get_flag(self, cap: string, flag: string) → boolean

          See cap_get_flag(3).



set_flag(self, flag: string, caps: string[], value: boolean)

          See cap_set_flag(3).



fill_flag(self, to: string, ref: linux_capabilities, from: string)

          See cap_fill_flag(3).



fill(self, to: string, from: string)

          See cap_fill(3).



set_proc(self)

          See cap_set_proc(3).



Only the master VM is allowed to use this function.






get_nsowner(self) → integer

          See cap_get_nsowner(3).



set_nsowner(self, rootuid: integer)

          See cap_set_nsowner(3).




Metamethods

          
__tostring()

          See cap_to_text(3).




Bugs

          There’s a libpsx bug that prevents thread synchronization to work:
https://bugzilla.kernel.org/show_bug.cgi?id=218607. This affects:



	
set_proc()


	
cap_drop_bound()


	
cap_set_ambient()


	
cap_reset_ambient()


	
cap_set_secbits()











system.seccomp_set_mode_filter


        
Synopsis

          
        local system = require "system"
system.seccomp_set_mode_filter(bpf_fprogram: byte_span)




Description

          Set the secure computing (seccomp) mode for the calling process
(i.e. SECCOMP_FILTER_FLAG_TSYNC is always used), to limit the available system
calls.



Only the master VM is allowed to use this function.









system.landlock_create_ruleset


        
Synopsis

          
        local system = require "system"
system.landlock_create_ruleset(attr: table|nil, flags: table|nil) -> file_descriptor|integer




Description

          Creates a new file descriptor identifying a ruleset.



Only available on Linux.






Parameters

          

	
attr.handled_access_fs: string[]


	
"execute"


	
"write_file"


	
"read_file"


	
"read_dir"


	
"remove_dir"


	
"remove_file"


	
"make_char"


	
"make_dir"


	
"make_reg"


	
"make_sock"


	
"make_fifo"


	
"make_block"


	
"make_sym"


	
"refer"


	
"truncate"








	
flags: string[]


	
"version"

















system.landlock_add_rule


        
Synopsis

          
        local system = require "system"
system.landlock_add_rule(ruleset_fd: file_descriptor, rule_type: "path_beneath", attr: table)




Description

          Adds a new Landlock rule to an existing ruleset.



Only available on Linux.






Parameters

          

	
attr.allowed_access: string[]


	
"execute"


	
"write_file"


	
"read_file"


	
"read_dir"


	
"remove_dir"


	
"remove_file"


	
"make_char"


	
"make_dir"


	
"make_reg"


	
"make_sock"


	
"make_fifo"


	
"make_block"


	
"make_sym"


	
"refer"


	
"truncate"








	
attr.parent_fd: integer











system.landlock_restrict_self


        
Synopsis

          
        local system = require "system"
system.landlock_restrict_self(ruleset_fd: file_descriptor)




Description

          Enforce a Landlock ruleset for the calling process.



Only the master VM is allowed to use this function.






Only available on Linux.






Bugs

          There’s a libpsx bug that prevents thread synchronization to work:
https://bugzilla.kernel.org/show_bug.cgi?id=218607.






system.getpid


        
Synopsis

          
        local system = require "system"
system.getpid() -> integer




Description

          Returns the process ID of the calling process.






system.getppid


        
Synopsis

          
        local system = require "system"
system.getppid() -> integer




Description

          Returns the parent process ID of the calling process.






system.kill


        
Synopsis

          
        local system = require "system"
system.kill(pid: integer, sig: integer)




Description

          See kill(2).



Only the master VM is allowed to use this function.









system.getpgrp


        
Synopsis

          
        local system = require "system"
system.getpgrp() -> integer




Description

          See getpgrp(3).






system.getpgid


        
Synopsis

          
        local system = require "system"
system.getpgid(pid: integer) -> integer




Description

          See getpgid(3).






system.setpgid


        
Synopsis

          
        local system = require "system"
system.setpgid(pid: integer, pgid: integer)




Description

          See setpgid(3).



Only the master VM is allowed to use this function.









system.getsid


        
Synopsis

          
        local system = require "system"
system.getsid(pid: integer) -> integer




Description

          See getsid(3).






system.setsid


        
Synopsis

          
        local system = require "system"
system.setsid() -> integer




Description

          See setsid(3).



Only the master VM is allowed to use this function.









system.jail_set


        
Synopsis

          
        local system = require "system"
system.jail_set(params: { [string]: string|boolean }, flags: string[]|nil) -> integer




Description

          Create or modify a jail.

Jail parameters are given as strings and they’ll be transparently converted to
the native format accepted by the kernel.

flags may contain the following values:



	
"create"


	
"update"


	
"dying"






See jail(8) for more information on the core jail parameters.






system.jail_get


        
Synopsis

          
        local system = require "system"
system.jail_get(params: table, flags: string[]|nil) -> integer, { [string]: string }




Description

          Retrieves jail parameters.

params specify — as a list of strings — which parameters are desired in the
returned value.

params also specify — in the same format as used by system.jail_set() — which jail to read values from. Usually "jid" or "name" are used as
filters. The special parameter "lastjid" can be used to retrieve a list of all
jails.

flags may contain the following values:



	
"dying"








Example

          Retrieve the hostname and path of jail "foo":


        local jid, params = system.jail_get {
    "host.hostname",
    "path",
    ["name"] = "foo"
}

print(jid)
print(params["host.hostname"])
print(params.path)







system.jail_remove


        
Synopsis

          
        local system = require "system"
system.jail_remove(jid: integer)




Description

          Removes the jail identified by jid.






system.jailparam_all


        
Synopsis

          
        local system = require "system"
system.jailparam_all() -> string[]




Description

          Returns a list of all known jail parameters.






tls.dial


        
Synopsis

          
        local tls = require "tls"

tls.dial(ep: string[, tls_ctx: tls.context]) -> socket




Description

          

	
Performs ip.tcp.dial(ep).


	
Set common options (e.g. no-delay).


	
tls.socket.new().


	
Client handshake (e.g. verify-mode, SNI, hostname, …​, actual TLS
handshake).


	
Returns the connected socket.






Current fiber is suspended until operation finishes.






tls.context


        
Functions

          
new(method: string) → tls.context

          Constructor.

method must be one of:



	
"sslv2"


	
"sslv2_client"


	
"sslv2_server"


	
"sslv3"


	
"sslv3_client"


	
"sslv3_server"


	
"tlsv1"


	
"tlsv1_client"


	
"tlsv1_server"


	
"sslv23"


	
"sslv23_client"


	
"sslv23_server"


	
"tlsv11"


	
"tlsv11_client"


	
"tlsv11_server"


	
"tlsv12"


	
"tlsv12_client"


	
"tlsv12_server"


	
"tlsv13"


	
"tlsv13_client"


	
"tlsv13_server"


	
"tls"


	
"tls_client"


	
"tls_server"








add_certificate_authority(self, data: byte_span)

          Add certification authority for performing verification.



add_verify_path(self, path: filesystem.path)

          Add a directory containing certificate authority files to be used for performing
verification.



clear_options(self, flags: string[])

          Clear options on the context.



load_verify_file(self, filename: filesystem.path)

          Load a certification authority file for performing verification.



set_default_verify_paths(self)

          Configures the context to use the default directories for finding certification
authority certificates.



set_options(self, flags: string[])

          Set options on the context.



set_password_callback(self, callback: function)

          Set the password callback.

callback's signature must be:


        function callback(max_length: integer, purpose: string) -> string


purpose will be either "for_reading" or "for_writing".



The function callback will be called from an unspecified fiber where
IO/blocking operations are disabled.






set_verify_callback(self, callback: string[, callback_options…​])

          Set the callback used to verify peer certificates.

For now only one callback is supported:



	
"host_name_verification"


	
callback_options will be a single string
containing the host name.








set_verify_depth(self, depth: integer)

          Set the peer verification depth.



set_verify_mode(self, mode: string)

          Set the peer verification mode.

mode might be one of the following:



	
"none".


	
"peer".


	
"fail_if_no_peer_cert".


	
"client_once".








use_certificate(self, data: byte_span, fmt: string)

          Use a certificate from a memory buffer.

fmt might be one of the following:



	
"asn1"


	
ASN.1 file.


	
"pem"


	
PEM file.








use_certificate_chain(self, data: byte_span)

          Use a certificate chain from a memory buffer.



use_certificate_chain_file(self, filename: filesystem.path)

          Use a certificate chain from a file.



use_certificate_file(self, filename: filesystem.path, fmt: string)

          Use a certificate from a file.

fmt might be one of the following:



	
"asn1"


	
ASN.1 file.


	
"pem"


	
PEM file.








use_private_key(self, data: byte_span, fmt: string)

          Use a private key from a memory buffer.

fmt might be one of the following:



	
"asn1"


	
ASN.1 file.


	
"pem"


	
PEM file.








use_private_key_file(self, filename: filesystem.path, fmt: string)

          Use a private key from a file.

fmt might be one of the following:



	
"asn1"


	
ASN.1 file.


	
"pem"


	
PEM file.








use_rsa_private_key(self, data: byte_span, fmt: string)

          Use an RSA private key from a memory buffer.

fmt might be one of the following:



	
"asn1"


	
ASN.1 file.


	
"pem"


	
PEM file.








use_rsa_private_key_file(self, filename: filesystem.path, fmt: string)

          Use an RSA private key from a file.

fmt might be one of the following:



	
"asn1"


	
ASN.1 file.


	
"pem"


	
PEM file.








use_tmp_dh(self, data: byte_span)

          Use the specified memory buffer to obtain the temporary Diffie-Hellman
parameters.



use_tmp_dh_file(self, filename: filesystem.path)

          Use the specified file to obtain the temporary Diffie-Hellman parameters.




Function flags

          
default_workarounds

          The
flag with same name in Boost.Asio:



Implement various bug workarounds.







no_compression

          The
flag with same name in Boost.Asio:



Disable compression. Compression is disabled by default.







no_sslv2

          The
flag with same name in Boost.Asio:



Disable SSL v2.







no_sslv3

          The
flag with same name in Boost.Asio:



Disable SSL v3.







no_tlsv1

          The
flag with same name in Boost.Asio:



Disable TLS v1.







no_tlsv1_1

          The
flag with same name in Boost.Asio:



Disable TLS v1.1.







no_tlsv1_2

          The
flag with same name in Boost.Asio:



Disable TLS v1.2.







no_tlsv1_3

          The
flag with same name in Boost.Asio:



Disable TLS v1.3.







single_dh_use

          The
flag with same name in Boost.Asio:



Always create a new key when using tmp_dh parameters.











tls.socket


        
        local s = tls.socket.new(ip.tcp.dial('www.example.com:https'))
s:client_handshake()
s = http.socket.new(s)

local req = http.request.new()
local res = http.response.new()
req.headers.host = 'www.example.com'

s:write_request(req)
s:read_response(res)



Functions

          
new(sock: ip.tcp.socket[, tls_ctx: tls.context]) → tls.socket

          Constructor.

If tls_ctx is not provided, a per-VM — generated on first use — default one
will be used.



client_handshake(self)

          Perform the TLS client handshake and suspend current fiber until operation
finishes.



server_handshake(self)

          Perform the TLS server handshake and suspend current fiber until operation
finishes.



read_some(self, buffer: byte_span) → integer

          Read data from the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes read.



write_some(self, buffer: byte_span) → integer

          Write data to the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



set_server_name(self, hostname: string)

          Sets the server name indication.



set_verify_callback(self, callback: string[, callback_options…​])

          Set the callback used to verify peer certificates.

For now only one callback is supported:



	
"host_name_verification"


	
callback_options will be a single string
containing the host name.








set_verify_depth(self, depth: integer)

          Set the peer verification depth.



set_verify_mode(self, mode: string)

          Set the peer verification mode.

mode might be one of the following:



	
"none".


	
"peer".


	
"fail_if_no_peer_cert".


	
"client_once".












unix.dial


        
Synopsis

          
        local unix = require "unix"
local fs = require "filesystem"

unix.stream.dial()
unix.seqpacket.dial()
unix.datagram.dial()

function(ep: string) -> socket




Description

          

	
Creates a socket.


	
Connects the created socket to ep.


	
Returns the connected socket.








If ep starts with @ then it’s assumed to represent an abstract UNIX
socket.




Current fiber is suspended until operation finishes.






unix.listen


        
Synopsis

          
        local unix = require "unix"

unix.stream.listen()
unix.seqpacket.listen()

function(ep: string[, mode: integer]) -> acceptor




Description

          

	
Creates a socket.


	
Set common options.


	
If mode is given, fchmod() the socket to bit.band(mode,
filesystem.mode(7,7,7)).


	
Binds the socket to ep.


	
If mode is given, chmod() the endpoint to bit.band(mode,
filesystem.mode(7,7,7)).


	
Put the socket in the listening state.


	
Returns the socket.








If ep starts with @ then it’s assumed to represent an abstract UNIX
socket.






Rationale

          
mode as an extra parameter

          To understand why mode is not part of the address string, we must understand
why port is part of the address string in ip.tcp.listen(). ip.tcp.listen()
accepts the port number as part of the address string because this info is
usually stored in config files where there’s a single string to identify the
endpoint to bind to. Having this logic embedded in ip.tcp.listen() makes it
easier to parse these config files.

However the permission access mode is not part of the endpoint address. mode
is not an address. It doesn’t identify an endpoint. It’s a separate value in the
config file (possibly fully omitted from the config altogether and hardcoded in
the program logic). It’s not even required in many situations (hence why it’s an
optional parameter here).



(Not) Removing files by default

          This function could simplify the user’s life even further if it also removed the
file pointed to by ep before it binds the socket. However it’d make the
function unusable in scenarios where the file must be removed by a different
process (e.g. a supervised daemon, or many processes contending over the address
with custom fallback code).

In other words, the presence/possibility of EADDRINUSE may be a desired
property in this algorithm by some programs.

This function is a high-level API and it’s not intended to replace every usage
of the lower-level API so the previous point may not be that strong of a reason.
However an explicit call to filesystem.remove() in user’s code is not that big
of a deal. It doesn’t add that much boilerplate.







unix.datagram.socket


        
        local sock = unix.datagram.socket.new()
sock.open()
sock.bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))

local buf = byte_span.new(1024)
local nread = sock:receive(buf)
print(buf:first(nread))



Functions

          
new() → unix.datagram.socket

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into an unix.datagram.socket object.







pair() → unix.datagram.socket, unix.datagram.socket

          Create a pair of connected sockets.



open(self)

          Open the socket.



bind(self, pathname: filesystem.path)

          Bind the socket to the given local endpoint.



connect(self, pathname: filesystem.path)

          Set the default destination address so datagrams can be sent using send()
without specifying a destination address.



disconnect(self)

          Dissolve the socket’s association by resetting the socket’s peer address
(i.e. connect(3) will be called with an AF_UNSPEC address).



close(self)

          Close the socket.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the boost::asio::error::operation_aborted
error.







shutdown(self, what: string)

          Disable sends or receives on the socket.

what can be one of the following:



	
"receive"


	
Shutdown the receive side of the socket.


	
"send"


	
Shutdown the send side of the socket.


	
"both"


	
Shutdown both send and receive on the socket.








cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native socket to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error. Ownership of the
native socket is then transferred to the caller.







receive(self, buffer: byte_span[, flags: string[]]) → integer

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read.



receive_from(self, buffer: byte_span[, flags: string[]]) → integer, filesystem.path

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the pathname of the
remote sender of the datagram.



send(self, buffer: byte_span[, flags: string[]]) → integer

          Send data on the datagram socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



The send operation can only be used with a connected socket. Use the
send_to function to send data on an unconnected datagram socket.






send_to(self, buffer: byte_span, pathname: filesystem.path[, flags: string[]]) → integer

          Send a datagram to the specified remote endpoint and blocks current fiber until
it completes or errs.

Returns the number of bytes written.



receive_with_fds(self, buffer: byte_span, maxfds: integer) → integer, file_descriptor[]

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the table containing the fds read.



receive_from_with_fds(self, buffer: byte_span, maxfds: integer) → integer, filesystem.path, file_descriptor[]

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the pathname of the remote sender of the
datagram plus the table containing the fds read.



send_with_fds(self, buffer: byte_span, fds: file_descriptor[]) → integer

          Send data on the datagram socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



The send operation can only be used with a connected socket. Use the
send_to function to send data on an unconnected datagram socket.






send_to_with_fds(self, buffer: byte_span, pathname: filesystem.path, fds: file_descriptor[]) → integer

          Send a datagram to the specified remote endpoint and blocks current fiber until
it completes or errs.

Returns the number of bytes written.



set_option(self, opt: string, val)

          Set an option on the socket.

Currently available options are:



	
"debug"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the socket.

Currently available options are:



	
"debug"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.








io_control(self, command: string[, …​])

          Perform an IO control command on the socket.

Currently available commands are:



	
"bytes_readable"


	
Expects no arguments. Get the amount of data that can be
read without blocking. Implements the FIONREAD IO control command.









Function flags

          
peek

          The
flag with same name in Boost.Asio:



Peek at incoming data without removing it from the input queue.








Properties

          
is_open: boolean

          Whether the socket is open.



local_path: filesystem.path

          The local address endpoint of the socket.



remote_path: filesystem.path

          The remote address endpoint of the socket.







unix.stream.acceptor


        
        local a = unix.stream.acceptor.new()
a:open()
a:bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))
a:listen()

while true do
    local s = a:accept()
    spawn(function()
        my_client_handler(s)
    end)
end



Functions

          
new() → unix.stream.acceptor

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into an unix.stream.acceptor object.







open(self)

          Open the acceptor.



set_option(self, opt: string, val)

          Set an option on the acceptor.

Currently available options are:



	
"enable_connection_aborted"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the acceptor.

Currently available options are:



	
"enable_connection_aborted"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.








bind(self, pathname: filesystem.path)

          Bind the acceptor to the given local endpoint.



listen(self [, backlog: integer])

          Place the acceptor into the state where it will listen for new connections.

backlog is the maximum length of the queue of pending connections. If not
provided, an implementation defined maximum length will be used.



accept(self) → unix.stream.socket

          Initiate an accept operation and blocks current fiber until it completes or
errs.



wait(self, wait_type: "read"|"write"|"error")

          Wait for the socket to become ready to read, ready to write, or to have pending
error conditions.

In short, the reactor model is exposed on top of the proactor model.



You shouldn’t be using reactor-style operations on Emilua. However if
you’re trying to compete against systemD (or just xinetd) implementing a service
manager employing socket activation then you’ll need the readiness event to
trigger the managed service startup sequence.




wait_type can be one of the following:



	
"read"


	
Wait for a socket to become ready to read.


	
"write"


	
Wait for a socket to become ready to write.


	
"error"


	
Wait for a socket to have error conditions pending.








close(self)

          Close the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to
again perform socket accept operations.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native acceptor to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous accept operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native acceptor
is then transferred to the caller.








Properties

          
is_open: boolean

          Whether the acceptor is open.



local_path: filesystem.path

          The local address of the acceptor.







unix.stream.socket


        
        local a, b = unix.stream.socket.pair()

spawn(function()
    local buf = byte_span.new(1024)
    local nread = b:read_some(buf)
    print(buf:first(nread))
end):detach()

local nwritten = stream.write_all(a, 'Hello World')
print(nwritten)



Functions

          
new() → unix.stream.socket

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into an unix.stream.socket object.







pair() → unix.stream.socket, unix.stream.socket

          Create a pair of connected sockets.



open(self)

          Open the socket.



bind(self, pathname: filesystem.path)

          Bind the socket to the given local endpoint.



close(self)

          Close the socket.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the boost::asio::error::operation_aborted
error.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native socket to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error. Ownership of the
native socket is then transferred to the caller.







io_control(self, command: string[, …​])

          Perform an IO control command on the socket.

Currently available commands are:



	
"bytes_readable"


	
Expects no arguments. Get the amount of data that can be
read without blocking. Implements the FIONREAD IO control command.








shutdown(self, what: string)

          Disable sends or receives on the socket.

what can be one of the following:



	
"receive"


	
Shutdown the receive side of the socket.


	
"send"


	
Shutdown the send side of the socket.


	
"both"


	
Shutdown both send and receive on the socket.








connect(self, pathname: filesystem.path)

          Initiate a connect operation and blocks current fiber until it completes or
errs.



disconnect(self)

          Dissolve the socket’s association by resetting the socket’s peer address
(i.e. connect(3) will be called with an AF_UNSPEC address).



read_some(self, buffer: byte_span) → integer

          Read data from the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes read.



write_some(self, buffer: byte_span) → integer

          Write data to the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



receive_with_fds(self, buffer: byte_span, maxfds: integer) → integer, file_descriptor[]

          Read data from the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes read + the table containing the fds read.



send_with_fds(self, buffer: byte_span, fds: file_descriptor[]) → integer

          Write data to the stream socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



fds are not closed and can be re-converted to some Emilua IO object if
so one wishes.






set_option(self, opt: string, val)

          Set an option on the socket.

Currently available options are:



	
"send_low_watermark"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_low_watermark"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the socket.

Currently available options are:



	
"send_low_watermark"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_low_watermark"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.


	
"remote_credentials": { uid: integer, groups: integer[], pid: integer }


	
Returns the credentials from the remote process.


On Linux, groups don’t include the supplementary group list.






pid is racy and you shouldn’t use it for anything but debugging
purposes.






	
"remote_security_labels": { [string]: string }|string|nil


	
(FreeBSD only) Returns the security labels associated with each policy for the
remote process.
Optionally one may pass an extra argument to get_option() with either a list
of strings for the policies of interest, or just a single string in case there’s
only one policy of interest.



	
"remote_security_label": string


	
(Linux only) Returns the SELinux security label associated with the remote
process.









Properties

          
is_open: boolean

          Whether the socket is open.



local_path: filesystem.path

          The local address of the socket.



remote_path: filesystem.path

          The remote address of the socket.







unix.seqpacket.acceptor


        
        local a = unix.seqpacket.acceptor.new()
a:open()
a:bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))
a:listen()

while true do
    local s = a:accept()
    spawn(function()
        my_client_handler(s)
    end)
end



Functions

          
new() → unix.seqpacket.acceptor

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into an unix.seqpacket.acceptor object.







open(self)

          Open the acceptor.



set_option(self, opt: string, val)

          Set an option on the acceptor.

Currently available options are:



	
"enable_connection_aborted"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the acceptor.

Currently available options are:



	
"enable_connection_aborted"


	
Check
Boost.Asio documentation.


	
"debug"


	
Check
Boost.Asio documentation.








bind(self, pathname: filesystem.path)

          Bind the acceptor to the given local endpoint.



listen(self [, backlog: integer])

          Place the acceptor into the state where it will listen for new connections.

backlog is the maximum length of the queue of pending connections. If not
provided, an implementation defined maximum length will be used.



accept(self) → unix.seqpacket.socket

          Initiate an accept operation and blocks current fiber until it completes or
errs.



wait(self, wait_type: "read"|"write"|"error")

          Wait for the socket to become ready to read, ready to write, or to have pending
error conditions.

In short, the reactor model is exposed on top of the proactor model.



You shouldn’t be using reactor-style operations on Emilua. However if
you’re trying to compete against systemD (or just xinetd) implementing a service
manager employing socket activation then you’ll need the readiness event to
trigger the managed service startup sequence.




wait_type can be one of the following:



	
"read"


	
Wait for a socket to become ready to read.


	
"write"


	
Wait for a socket to become ready to write.


	
"error"


	
Wait for a socket to have error conditions pending.








close(self)

          Close the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to
again perform socket accept operations.







cancel(self)

          Cancel all asynchronous operations associated with the acceptor.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native acceptor to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous accept operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native acceptor
is then transferred to the caller.








Properties

          
is_open: boolean

          Whether the acceptor is open.



local_path: filesystem.path

          The local address of the acceptor.







unix.seqpacket.socket


        
        local sock = unix.seqpacket.socket.new()
sock.open()
sock.bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))

local buf = byte_span.new(1024)
local nread = sock:receive(buf)
print(buf:first(nread))



A note on 0-sized packets

          AF_UNIX+SOCK_SEQPACKET sockets behave just the same on Linux and BSD
systems. It’s safe to use them as IPC primitives in your system. However there
are a few caveats related to the idea of what SOCK_SEQPACKET were supposed to
mean originally.



seems SEQPACKET is too exotic thing that everyone implements it in own manner,
because i’ve tested SCTP seqpacket implementation, and found […​]

~ Arseny Krasnov https://lore.kernel.org/netdev/8bd80d3f-3e00-5e31-42a1-300ff29100ae@kaspersky.com/




The API for general SOCK_SEQPACKET sockets exposes a few incompatible
mechanisms to tell EOF apart from 0-sized messages. These mechanisms are not
found in AF_UNIX sockets.

As for AF_UNIX+SOCK_SEQPACKET,
0-sized
payloads are valid and indistinguishable from the end of the stream.

According
to POSIX the behaviour for Linux and BSD is wrong, but pointing to POSIX or
changing the behaviour of current systems is useless (even harmful) at this
point.

Emilua will just report EOF whenever a 0-sized read occurs.

If you control both sides of the communication channel, just avoid sending any
0-sized datagram and you’re safe.

If you don’t control the sending side, you might receive 0-sized datagrams that
are in reality an attack to the system. If your program is the only receiver
there’s hardly any harm. However if you need to make sure the connection is
closed when your program deems it as so, just call shutdown("receive") or
shutdown("both") to make sure the connection is closed to every associated
handle.

However don’t let this small note scare you. AF_UNIX+SOCK_SEQPACKET sockets
are a powerful IPC primitive that will save you from way worse concerns if your
application needs a socket that is connection-oriented, preserves message
boundaries, and delivers messages in the order that they were
sent. SOCK_STREAM and SOCK_DGRAM will have their own caveats.



Functions

          
new() → unix.seqpacket.socket

          
        new()                    ①
new(fd: file_descriptor) ②




	① Default constructor.

	② Converts a file descriptor into an unix.seqpacket.socket object.







pair() → unix.seqpacket.socket, unix.seqpacket.socket

          Create a pair of connected sockets.



open(self)

          Open the socket.



bind(self, pathname: filesystem.path)

          Bind the socket to the given local endpoint.



close(self)

          Close the socket.

Forward the call to
the
function with same name in Boost.Asio:



Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the boost::asio::error::operation_aborted
error.







cancel(self)

          Cancel all asynchronous operations associated with the socket.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error.







assign(self, fd: file_descriptor)

          Assign an existing native socket to self.



release(self) → file_descriptor

          Release ownership of the native descriptor implementation.

Forward the call to
the
function with same name in Boost.Asio:



This function causes all outstanding asynchronous connect, send and receive
operations to finish immediately, and the handlers for cancelled operations will
be passed the boost::asio::error::operation_aborted error. Ownership of the
native socket is then transferred to the caller.







shutdown(self, what: string)

          Disable sends or receives on the socket.

what can be one of the following:



	
"receive"


	
Shutdown the receive side of the socket.


	
"send"


	
Shutdown the send side of the socket.


	
"both"


	
Shutdown both send and receive on the socket.








connect(self, pathname: filesystem.path)

          Initiate a connect operation and blocks current fiber until it completes or
errs.



disconnect(self)

          Dissolve the socket’s association by resetting the socket’s peer address
(i.e. connect(3) will be called with an AF_UNSPEC address).



receive(self, buffer: byte_span[, flags: string[]]) → integer

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read.



send(self, buffer: byte_span[, flags: string[]]) → integer

          Send data on the seqpacket socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



receive_with_fds(self, buffer: byte_span, maxfds: integer) → integer, file_descriptor[]

          Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the table containing the fds read.



send_with_fds(self, buffer: byte_span, fds: file_descriptor[]) → integer

          Send data on the seqpacket socket and blocks current fiber until it completes or
errs.

Returns the number of bytes written.



set_option(self, opt: string, val)

          Set an option on the socket.

Currently available options are:



	
"debug"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.








get_option(self, opt: string) → value

          Get an option from the socket.

Currently available options are:



	
"debug"


	
Check
Boost.Asio documentation.


	
"send_buffer_size"


	
Check
Boost.Asio documentation.


	
"receive_buffer_size"


	
Check
Boost.Asio documentation.


	
"remote_credentials": { uid: integer, groups: integer[], pid: integer }


	
Returns the credentials from the remote process.


On Linux, groups don’t include the supplementary group list.






pid is racy and you shouldn’t use it for anything but debugging
purposes.






	
"remote_security_labels": { [string]: string }|string|nil


	
(FreeBSD only) Returns the security labels associated with each policy for the
remote process.
Optionally one may pass an extra argument to get_option() with either a list
of strings for the policies of interest, or just a single string in case there’s
only one policy of interest.



	
"remote_security_label": string


	
(Linux only) Returns the SELinux security label associated with the remote
process.








io_control(self, command: string[, …​])

          Perform an IO control command on the socket.

Currently available commands are:



	
"bytes_readable"


	
Expects no arguments. Get the amount of data that can be
read without blocking. Implements the FIONREAD IO control command.









Function flags

          
peek

          The
flag with same name in Boost.Asio:



Peek at incoming data without removing it from the input queue.








Properties

          
is_open: boolean

          Whether the socket is open.



local_path: filesystem.path

          The local address endpoint of the socket.



remote_path: filesystem.path

          The remote address endpoint of the socket.







file_descriptor


        A file descriptor.



It cannot be created directly.






On Windows, file_descriptor is only implemented for pipes and
file.stream.





Functions

          
close(self)

          Closes the file descriptor w/o waiting for the GC.



dup(self) → file_descriptor

          Creates a new file descriptor that refers to the same open file description.



is_socket(self, family: "unix"|"inet"|"inet6"[, type: "stream"|"datagram"|"seqpacket"[, protocol: "tcp"|"udp"]]) → boolean

          Checks whether the file descriptor refers to a socket of the specified family,
type, and protocol.



kcmp(self, other: file_descriptor) → integer

          See kcmp(2) and KCMP_FILE.



openat(self, path: filesystem.path, flags: string[][, mode: integer]) → file_descriptor

          The implementation for this function always include the flag O_NOCTTY behind
the scenes.

flags may contain:



	
"append"


	
Open the file in append mode.


	
"create"


	
Create the file if it does not exist.


	
"directory"


	
Fail if path resolves to a non-directory file.


	
"exclusive"


	
Ensure a new file is created. Must be combined with create.


	
"no_follow"


	
Fail if path resolves to a symbolic link.


	
"path"


	
Get a stable reference to an inode without actually opening the
contents.


	
"read_only"


	
Open the file for reading.


	
"read_write"


	
Open the file for reading and writing.


	
"sync_all_on_write"


	
Open the file so that write operations automatically
synchronise the file data and metadata to disk (O_SYNC).


	
"temporary"


	
Create an unnamed temporary regular file.


	
"truncate"


	
Open the file with any existing contents truncated.


	
"write_only"


	
Open the file for writing.


	
"resolve_beneath"


	
Path resolution must not cross the fd directory.


	
"resolve_in_root"


	
Treat the directory referred to by dirfd as the root
directory while resolving pathname. Absolute symbolic links are interpreted
relative to dirfd.


	
"resolve_no_magiclinks"


	
Disallow all magic-link resolution during path
resolution.


	
"resolve_no_symlinks"


	
Disallow resolution of symbolic links during path
resolution.


	
"resolve_no_xdev"


	
Disallow traversal of mount points during path resolution
(including all bind mounts).


	
"resolve_cached"


	
Make the open operation fail unless all path components are
already present in the kernel’s lookup cache.






See openat(3).



cap_get(self) → system.linux_capabilities

          See cap_get_fd(3).



cap_set(self, caps: system.linux_capabilities)

          See cap_set_fd(3).



cap_rights_limit(self, rights: string[])

          See cap_rights_limit(2).

Parameters:



	
rights: string[]


	
"accept"


	
"acl_check"


	
"acl_delete"


	
"acl_get"


	
"acl_set"


	
"bind"


	
"bindat"


	
"chflagsat"


	
"connect"


	
"connectat"


	
"create"


	
"event"


	
"extattr_delete"


	
"extattr_get"


	
"extattr_list"


	
"extattr_set"


	
"fchdir"


	
"fchflags"


	
"fchmod"


	
"fchmodat"


	
"fchown"


	
"fchownat"


	
"fcntl"


	
"fexecve"


	
"flock"


	
"fpathconf"


	
"fsck"


	
"fstat"


	
"fstatat"


	
"fstatfs"


	
"fsync"


	
"ftruncate"


	
"futimes"


	
"futimesat"


	
"getpeername"


	
"getsockname"


	
"getsockopt"


	
"ioctl"


	
"kqueue"


	
"kqueue_change"


	
"kqueue_event"


	
"linkat_source"


	
"linkat_target"


	
"listen"


	
"lookup"


	
"mac_get"


	
"mac_set"


	
"mkdirat"


	
"mkfifoat"


	
"mknodat"


	
"mmap"


	
"mmap_r"


	
"mmap_rw"


	
"mmap_rwx"


	
"mmap_rx"


	
"mmap_w"


	
"mmap_wx"


	
"mmap_x"


	
"pdgetpid"


	
"pdkill"


	
"peeloff"


	
"pread"


	
"pwrite"


	
"read"


	
"recv"


	
"renameat_source"


	
"renameat_target"


	
"seek"


	
"sem_getvalue"


	
"sem_post"


	
"sem_wait"


	
"send"


	
"setsockopt"


	
"shutdown"


	
"symlinkat"


	
"ttyhook"


	
"unlinkat"


	
"write"














cap_rights_contains(self, rights: string[]) → boolean

          Returns whether all the given capability rights are set.

rights has the same set of allowed values as cap_rights_limit().



cap_rights_remove(self, rights: string[])

          It performs the following actions (in a non-atomic manner):



	
Query current capabilities on the file descriptor.


	
Remove rights from the returned set.


	
Limit capabilities to the new set.






rights has the same set of allowed values as cap_rights_limit().



cap_ioctls_limit(self, cmds: integer[])

          See cap_ioctls_limit(2).



cap_ioctls_get(self) → integer[]|"all"

          See cap_ioctls_get(2).



cap_fcntls_limit(self, fcntlrights: string[])

          See cap_fcntls_limit(2).

Parameters:



	
fcntlrights: string[]


	
"getfl"


	
"setfl"


	
"getown"


	
"setown"














cap_fcntls_get(self) → string[]

          See cap_fcntls_get(2).




Properties

          
non_blocking: boolean

          Query/set fcntl flag O_NONBLOCK.



type: string

          One of:



	
"regular"


	
"directory"


	
"symlink"


	
"block"


	
"character"


	
"fifo"


	
"socket"


	
"unknown"









Metamethods

          
__tostring()

          Produces a string in the format "/dev/fd/%i" where "%i" is the integer value
as seen by the OS.




EPUB/modules/tutorial/images/muxing_services_info.png
acpid | | socket

 son(event 30D1) |








EPUB/modules/tutorial/images/authorization.png
FRCEBOOK GMAIL

O

IF SOMEONE STEALS MY LAPTOP WHILE I'™M
LOGGED IN, THEY CAN READ MY EMAIL, TRKE MY
MONEY, AND IMPERSONATE. ME TO MY FRIENDS,

BUT AT LEAST THEY CAN'T NSTALL
DRIVERS WITHOUT MY PERMISSION.








EPUB/emilua_simple.png
limited system view

supervisor
Luavm

sandboxed
process

Lua
M






EPUB/modules/tutorial/images/corrupt_stream_on_composed_short_reads.png
‘wmem ‘ ‘wmerz ‘ ‘wme,all ‘ ‘ stream ‘

| stream, buft

stream, buf2

<

write_some(buft)

write_some(buf2)

bufi/N1

<
write_some(buft:sub(N1))
e

buf2/0K
<








EPUB/modules/tutorial/images/libc_service_filters.png
Process

callslibc receives result
function

Lua chunk filter

A
M
Proxified function Real libc
«—
A
M

libc_service.master







EPUB/nav.xhtml



Table of Contents





		Preface

		Emilua


		Conventions


		ChangeLog








		Tutorials

		Getting started


		Working with streams


		Filesystem API


		Alternative projects


		Internals


		Internals (sandboxes)


		Fiber cancellation API


		Lua 5.1


		Modules


		Errors


		Sandboxes


		Linux namespaces


		C++ embedder API








		Reference

		generic_error


		asio_error


		format


		byte_span


		condition_variable


		filesystem.path


		filesystem.mode


		filesystem.directory_entry


		filesystem.directory_iterator


		filesystem.recursive_directory_iterator


		filesystem.absolute


		filesystem.canonical


		filesystem.weakly_canonical


		filesystem.relative


		filesystem.proximate


		filesystem.current_working_directory


		filesystem.chroot


		filesystem.copy


		filesystem.copy_file


		filesystem.copy_symlink


		filesystem.create_directory


		filesystem.open


		filesystem.mkdir


		filesystem.create_hardlink


		filesystem.create_symlink


		filesystem.mkfifo


		filesystem.mknod


		filesystem.makedev


		filesystem.dev_major


		filesystem.dev_minor


		filesystem.equivalent


		filesystem.file_size


		filesystem.hardlink_count


		filesystem.clock


		filesystem.last_write_time


		filesystem.chown


		filesystem.chmod


		filesystem.read_symlink


		filesystem.remove


		filesystem.rename


		filesystem.resize_file


		filesystem.is_empty


		filesystem.exists


		filesystem.is_block_device


		filesystem.is_character_device


		filesystem.is_directory


		filesystem.is_fifo


		filesystem.is_other


		filesystem.is_regular_file


		filesystem.is_socket


		filesystem.is_symlink


		filesystem.space


		filesystem.status


		filesystem.temp_directory_path


		filesystem.umask


		filesystem.cap_get_file


		filesystem.cap_set_file


		file.random_access


		file.stream


		file.read_all_at


		file.read_at_least_at


		file.write_all_at


		file.write_at_least_at


		ip.address


		ip.get_address_info


		ip.get_name_info


		ip.connect


		ip.dial


		ip.host_name


		ip.tostring


		ip.toendpoint


		ip.tcp.listen


		ip.tcp.acceptor


		ip.tcp.socket


		ip.udp.socket


		mutex


		recursive_mutex


		future


		pipe.read_stream


		pipe.write_stream


		pipe.pair


		regex


		serial_port


		time.sleep


		time.steady_clock


		time.steady_timer


		time.system_clock


		time.system_timer


		time.high_resolution_clock


		spawn


		this_fiber


		inbox


		spawn_vm


		init.script


		spawn_context_threads


		stream.write_all


		stream.write_at_least


		stream.read_all


		stream.read_at_least


		stream.scanner


		system.arguments


		system.environment


		system.in_


		system.out


		system.err


		system.caph_limit_stdio


		system.get_lowfd


		system.get_ld_library_directories


		libc_service


		libc_service.master


		libc_service.slave


		system.exit


		system.signal


		system.signal.raise


		system.signal.set


		system.signal.ignore


		system.signal.default


		system.spawn


		system.getresuid


		system.getresgid


		system.setresuid


		system.setresgid


		system.getgroups


		system.setgroups


		system.set_no_new_privs


		system.linux_capabilities


		system.seccomp_set_mode_filter


		system.landlock_create_ruleset


		system.landlock_add_rule


		system.landlock_restrict_self


		system.getpid


		system.getppid


		system.kill


		system.getpgrp


		system.getpgid


		system.setpgid


		system.getsid


		system.setsid


		system.jail_set


		system.jail_get


		system.jail_remove


		system.jailparam_all


		tls.dial


		tls.context


		tls.socket


		unix.dial


		unix.listen


		unix.datagram.socket


		unix.stream.acceptor


		unix.stream.socket


		unix.seqpacket.acceptor


		unix.seqpacket.socket


		file_descriptor















		Start of Content












EPUB/modules/tutorial/images/corrupt_stream_on_composed_short_reads_result.png
! headofm





EPUB/emilua_overview.png
Lua Lua Lua
M M M
Emilua
async
10
threads
fibers
sandbox
process
Emilua
Emilua
Lua
M
Lua Lua
M M
threads











