
Emilua 0.9 reference documentation

Preface

| 1

Emilua

Lua
VM

Lua
VM

Lua
VM

Emilua

async
IO

threads

fibers

sandbox

process

Emilua

Emilua

Lua
VM

Lua
VM

Lua
VM

threads

Emilua is an execution engine. As a runtime for your Lua programs, it’ll orchestrate concurrent
systems by providing proper primitives you can build upon.

Emilua | 2

limited system view supervisor
Lua VM

sandboxed
process

Lua
VM

Emilua is not a framework. You don’t design the structure of your software by extending a complex
concurrency framework. On the contrary, you start simple and only makes use of primitives your
application needs. Should you only have the need for simple serial programs, you’ll have access to
plenty of IO abstractions that work across a broad range of platforms.

Fibers

limited system view supervisor
Lua VM

sandboxed
process

Lua
VM

When your software grows and the need to increase the concurrency level a notch arises, just
spawn fibers. The same IO abstractions that work on serial programs will work on concurrent
programs as well. You don’t need to pay an extra huge cost by completely refactoring your program
during this transition[1].

Emilua | 3

Sandboxes

limited system view supervisor
Lua VM

sandboxed
process

Lua
VM

Emilua has first-class support for modern sandboxing technologies.

• Linux.

◦ Namespaces.

◦ Seccomp.

◦ Landlock.

• FreeBSD.

◦ Jails.

◦ Capsicum.

Mitigate risks by creating disposable cheap sandboxes to parse untrusted input data.

Sandboxing support on Emilua is based around capabilities and elegantly integrates with the same
machinery that is used to implement the actor model.

Compartmentalised application development is, of necessity, distributed
application development, with software components running in different
processes and communicating via message passing.

— Capsicum: practical capabilities for UNIX, Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris
Kennaway

The only resource a sandbox starts with is inbox and its only method: receive(). In this initial state,
a sandbox can’t even ask for new resources (i.e. it’s a push model). The Lua VM on the host system
can then selectively choose which resources are safe to hand over (e.g. read-only access to a file and
a pipe).

Emilua | 4

https://en.wikipedia.org/wiki/Capability-based_security

Container runtime
A generic C-powered & Lua-driven container runtime. Many container runtimes out there focus on
specific containerization technologies such as Linux namespaces, but Emilua acts as a generic
container runtime that supports different kernel technologies[2]:

• Linux namespaces.

• FreeBSD jails.

Many container runtimes (e.g. bubblewrap, nsjail) are CLI-driven and give little room for flexibility.
The standard tool to automate CLI usage is BASH. However BASH cannot be used to restore
flexibility here (it can only automate CLI arguments). BASH scripts are a poor match for the
internal container setup phases, and that’s not usually supported. Even when BASH is supported for
the setup phases (e.g. LXC pre-mount, and net-up scripts), that’s usually very restricted in scope
given how inappropriate BASH is to drive the setup phases of a container. BASH scripts give you
more worries to bring up a container, not less:

• Poor synchronization primitives to drive the complex setup required to use new Linux
namespaces. BASH only gives you pipes and files. Files can’t even be used in all steps of this
setup (e.g. mount namespaces and pivot-root). Emilua will give you a rich pool of IPC primitives
not available to BASH scripts (check the documentation).

• You must be extra careful to not call any binaries from the container image as one must always
assume these images are compromised (that’s the whole point of isolating software within a
container to begin with), but BASH can’t do anything on its own and must always rely on
external tools (it’s probably a good idea to rely on static binaries of busybox as well to not
accidentally invoke compromised shared libraries from the container image). Emilua is safer as
it gives you access to a subset of the POSIX API plus a few extensions (e.g. mkdir, mount) that
calls the syscalls directly (i.e. no container binaries ever involved) within a Lua script to
initialize the container namespaces.

The pragmatic solution is to never involve BASH in the setup of Linux namespaces. The CLI tool
would do all actions declared in the initial arguments on your behalf, and only return you the final
result. The downside is a big loss in flexibility. If your use case falls outside of the tool’s envisioned
cases, you’re out of options.

Emilua is designed differently. Emilua offers you a fully-featured programming language and
VM — that’s Lua — to script the setup phases inside the containerized process.

However any general-purpose programming language can escape from BASH’s shortcomings with
respect to containerization challenges. Any container runtime meant to be used from source
code — not a CLI tool — will be flexible enough to more use cases. The new challenge here is how to
avoid leaking resources from the language’s own runtime to the container. That’s why it’s easy to
create a container runtime using C, but not so much for Java or Python.

What Emilua gives to Lua is a container runtime that surpassed these challenges and is ready to
roll. The API provides two contexts (program and container initialization), and you can coordinate
both to initialize your container programmatically any way you want. The container initialization
context was paranoiacally implemented to not inherit the parent process’s sensitive context (e.g.

Emilua | 5

memory other than the executable itself, env vars), to abort on any C API error by default, and to
securely erase the contents of temporary buffers (e.g. messages received through C.read() within
the initialization script, and any memory allocated by the Lua VM). You won’t find any of these in
other Lua projects.

A note on FreeBSD jails

FreeBSD jails work differently than Linux namespaces, and complex setups are not
really needed. However Emilua can still offer a few goodies here such as attaching
to an existing jail using a clean OS-level process to perform container-side
administrative tasks not specified by binaries found on the container image.

Later — should you desire — you can still use BASH to orchestrate Emilua programs after the setup
phases are fully encapsulated just inside Emilua programs. If you have no needs for customizing
the container setup phases, then Emilua doesn’t bring any advantages over other
tools — bubblewrap, nsjail, etc — and you’re already well served with the existing market solutions.

The same machinery used for containers is also used to create capsicum sandboxes. That’s a
testament of the runtime’s flexibility. Capsicum pose API requirements that cannot be met if you
can only think and design in terms of the seccomp model. Emilua is the only container runtime also
able to drive full use of capsicum sandboxes.

Cross-platform
• Windows.

• Linux.

• FreeBSD.

Emilua is powered by the battle-tested and scar-accumulating Boost.Asio library to drive IO and it’ll
make use of native APIs in a long list of supported platforms. However processor ISA compatibility
will be limited by LuaJIT availability.

Network IO
• TCP.

• UDP.

• TLS.

• Address/service forward/reverse name resolution.

• IPv6 support (and mostly transparent).

• Cancellable operations transparently integrated into the fiber interruption API.

• Several generic algorithms.

IPC
• UNIX domain sockets (stream, datagram, and seqpacket).

Emilua | 6

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/implementation.html
http://luajit.org/install.html

• SCM_RIGHTS fd-passing.

• Pipes.

• UNIX signals.

• Ctty job control (and basic pty support).

Filesystem API
• It easily abstracts path manipulation for different platforms (e.g. POSIX & Windows).

• Transparently translates to UTF-8 while retaining the native representation for the underlying
system under the hood.

• Directory iterators (flat and recursive).

• APIs to query attributes, manipulate permissions, and the like.

• Lots of algorithms (e.g. symlink-resolving path canonization, subtrees copying, etc).

Misc features
• Complete fiber API (sync primitives, interruption API, clean-up handlers, fiber local storage,

assert-like scheduling constraints, …).

• Integrates with Lua builtins (i.e. you can mix up fibers and coroutines, modules, …).

• AWK-inspired scanner to parse textual streams easily.

• Clocks & timers.

• File IO (for proactors only[3], so the main thread never blocks).

• Serial ports.

• A basic regex module.

• Native JSON module.

• Portable error code comparison.

• And much more.

[1] Emilua doesn’t suffer from Bob Nystrom' two colors problem.

[2] Future releases will also implement virtio-vsock to ease communication with containers managed by QEMU

[3] Right now, Windows' IOCP, and Linux’s io_uring.

Emilua | 7

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

Conventions

Type annotations
Lua syntax is extended to document expected types.

Parameter types

Colon punctuation is used to denote the start of some type annotation after some variable name.

function some_function(arg1: number, arg2: string)
 -- ...
end

Return type

The characters → are used to denote the return type of a function.

function some_function() -> number
 -- ...
end

function another_function() -> string, number
 -- ...
end

Recognized types

• nil

• boolean

• number

• integer

• string

• table

• function

value may be used when we don’t want to specify the return type for a function.

function yet_another_function() -> value
 -- ...
end

Conventions | 8

unspecified may be used to denote special values for which the actual type might change among
Emilua versions. The user should avoid making any assumptions about the concrete type of such
objects.

null: unspecified

Composite types

Type Syntax Example

Union type TYPE_1 | TYPE_2 file_descriptor | file.stream

Array VALUE_TYPE[] string[]

Dictionary { [KEY_TYPE]: VALUE_TYPE } { [string]: number }

Literals

Literals may be used when only a subset of values are acceptable for some parameter.

function some_function(a: 0|1|2, b: "stdin"|file_descriptor)
 -- ...
end

function another_function(c: string) -> { foo: string, bar: number }
 -- ...
end

Optional parameters

Brackets may be used to denote optional parameters.

function a_function(required: string[, optional1: integer, optional2: boolean])
 -- ...
end

function send_file(
 self,
 file: file.random_access,
 offset: integer,
 size_in_bytes: integer,
 n_number_of_bytes_per_send: integer
 [, head: byte_span[, tail: byte_span]]
) -> integer
 -- ...
end

function another_function([foo: number]) -> string[]|byte_span[]

Conventions | 9

 -- ...
end

For this syntax, it’s not necessary to specify nil as an optional accepted type.

Varargs

function fun(...: byte_span|string)
 -- ...
end

function fun2(command: string[, ...])
 -- ...
end

function fun3(n: integer) -> ip.address...
 -- ...
end

Overloads

If a function requires different explanations for each overload, code callouts are used to specify a
overload.

function foo(file.stream) ①
function foo(file.random_access) ②

① Lorem ipsum dolor sit amet, consectetur adipiscing elit

② sed do eiusmod tempor incididunt ut labore et dolore magna

Similar functions

Similar functions that take the same arguments may be documented together.

ip.tcp.get_address_info()
ip.tcp.get_address_v4_info()
ip.tcp.get_address_v6_info()
ip.udp.get_address_info()
ip.udp.get_address_v4_info()
ip.udp.get_address_v6_info()

function(host: string|ip.address, service: string|integer[, flags: integer]) -> table

Brace expansion as in BASH may appear in section titles to denote the functions that are similar
and documented together. However the full name for each function will still appear at the start of
the body for these sections.

Conventions | 10

1. this_fiber.{disable,restore}_interruption()

this_fiber.disable_interruption()
this_fiber.restore_interruption()

Check the interruption tutorial to see what it does.

Named parameters

For complex functions that accept too many options a table argument is used to emulate named
parameters. The parameters will then be defined in the text that follows.

parameter_a: string

Lorem ipsum

If a parameter is optional, then nil will be OR’ed among the valid types.

parameter_b: string|nil

Lorem ipsum

Another way to specify an optional parameter is to give it a default value. If a default value exists,
it’ll be used instead of nil. In this case, nil may be omitted. The default value follows an equals sign.

parameter_c: boolean = false

Lorem ipsum

parameter_d: number = unspecified

Lorem ipsum

If a parameter might accept different types, nested definition lists in the text may be used to define
the behavior for each type.

parameter_e: string|number

string

Lorem ipsum

number

dolor sit amet

If nested parameters exist, we’ll omit the table specification for the nested parameters, and directly
document each submember using a dot-notation.

parameter_f.foo: string

Lorem ipsum

parameter_f.bar: number

dolor sit amet

Conventions | 11

self

It’s safe to assume that any function that takes self as the first argument is not available as a free
function in the module. These functions can only be accessed through the __index's metamethod on
the given object.

If a function is also available as a free function in the module, an explicit overload will be
documented.

function append(self, ...: byte_span|string|nil) -> byte_span ①
function append(...: byte_span|string|nil) -> byte_span ②

When only the free function is available in that module, the term self won’t be used.

function append(o: byte_span[, ...])
 -- ...
end

Conventions | 12

ChangeLog

0.9 - 2024-06-26

Added

• filesystem.clock.time_point.seconds_since_unix_epoch.

• New bindings in init.script related to mount_setattr() (Linux).

Changed

• is_block_file() renamed to is_block_device().

• is_character_file() renamed to is_character_device().

0.8 - 2024-05-19

Added

• Add functions dial() and listen() from the likes of Golang.

• New way of embedding builtin modules to a custom binary/launcher.

Changed

• The code is now dual-licensed MIT and BSL-1.0. User picks either of these options. The
motivation is to make it easier to contribute code back to LuaJIT’s community. Previously it was
only easy to contribute code back to the Boost’s community.

• Split module unix into submodules.

◦ unix.datagram_socket → unix.datagram.socket.

◦ unix.stream_socket → unix.stream.socket.

◦ unix.stream_acceptor → unix.stream.acceptor.

◦ unix.seqpacket_socket → unix.seqpacket.socket.

◦ unix.seqpacket_acceptor → unix.seqpacket.acceptor.

• Removed tables for bit.bor() operations. Flags are now passed as lists of strings.

◦ file.open_flag.

◦ ip.address_info_flag.

◦ ip.message_flag.

◦ tls.context_flag.

◦ unix.message_flag.

• Actor messaging is now more asynchronous than before. Emilua intentionally used lots of
synchronization points internally for actor messaging as it’d be easier to remove

ChangeLog | 13

synchronization than to add (if the chosen semantics proved to be wrong later). Fast-forward to
the present and it’s clear now that the excessive synchronization is not really useful. The
excessive synchronization was not getting in the way for anything, but it wasn’t needed either.
The new semantics (channel.send is fully asynchronous to the target actor) are lighter to
implement as well so it might benefit some workloads. channel.send still retains some of the
previous properties such as most of the error-checking (e.g. detecting channel-closed for many
scenarios), post semantics in ASIO-lingo (fiber goes to the end of the execution queue so other
fibers have a chance to run), and interruptibility. We could go further and just don’t reschedule
the fiber nor check for interruptions at all, but I feel more comfortable doing small gradual
changes to see how the changes play out.

0.7 - 2024-04-17

Added

• Add seccomp support.

• Add filesystem.mkdir() to complement filesystem.create_directory().

• filesystem.mode() accepts new arguments now.

• Add filesystem.chroot().

• filesystem.current_working_directory() accepts file_descriptor objects on UNIX now.

• Add extra optional parameter to filesystem.mknod().

• Add filesystem.clock.epoch(). It’s useful to set the last modification date of every file in some
directory for the purposes of a reproducible build or something. However there are more
attributes besides last-write-time you need to care about if you’re planning to play with
reproducible builds (be warned!).

• Add filesystem.clock.unix_epoch() and filesystem.clock.now().

• Add more POSIX bindings to init.script API.

• Add the flock() family to file.stream and file.random_access.

• Now it’s possible to configure Landlock mode for the calling process or system.spawn()
subprocesses.

• Add byte_span methods for primitive types serialization (e.g. reading i32le from a 4-sized
buffer). It also works as an endianness handling interface. 64-bit integers are omitted from the
interface because LuaJIT only offers a hacky way to handle them.

Changed

• Make subprocess.pid nullable. That’s useful for synchronization when multiple fibers are
observing parts of subprocess state.

• Allow file_descriptor.close() to be called multiple times in a row.

• Change filesystem.copy_file() parameters.

• Change every name in the module filesystem from hard_* to hard* (e.g. create_hard_link() to
create_hardlink()). This C++17 convention is dumb and Python’s pathlib is the one who got it

ChangeLog | 14

right.

• Change default record_separator in stream.scanner to "\n".

• Always start subprocess-based actors with umask 022.

• Change system.spawn() parameters from nsenter_* to setns_*.

Fixed

• Close file descriptors from builtin PID1 so EPIPE propagates sooner.

• Fix races in filesystem.current_working_directory(). Now fchdir() is used.

• Small documentation issues.

• Avoid potential IO double-flush on FreeBSD after fork().

0.6 - 2024-01-06

Added

• Add FreeBSD’s jails support.

• Add function format() to format strings. The implementation uses C++'s libfmt.

• Add more functions to the module filesystem: exists(), is_block_file(), is_character_file(),
is_directory(), is_fifo(), is_other(), is_regular_file(), is_socket(), is_symlink(), mode(). It
was already possible to query for these attributes. These functions were added as an extra
convenience.

• Add yet more functions to the module filesystem: mkfifo(), mknod(), makedev().

• New UNIX socket options to retrieve security labels and credentials from the remote process.

• file_descriptor implemented for Windows pipes and file.stream.

• Many improvements to Windows version of system.spawn().

Changed

• Convert decomposition functions from filesystem.path to properties: root_name, root_directory,
root_path, relative_path, parent_path, filename, stem, extension.

• Convert some filesystem.path properties to string: root_name, root_directory, filename, stem,
extension.

• filesystem.path.iterator() will return strings at each iteration now.

Removed

• Remove HTTP & WebSocket classes. They should be offered as separate plugins.

0.5 - 2023-12-03

ChangeLog | 15

https://fmt.dev/

Added

• Add mutex.try_lock().

• Add module recursive_mutex.

• Add module future.

• Add filesystem.chown().

• Enable IPC-based actors on all UNIX systems.

• Add Linux Landlock support.

• Add FreeBSD Capsicum support.

Changed

• spawn_vm() performs the same module path resolution from require() now. That means it’s
possible to use root-imports from spawn_vm().

• spawn_vm() parameters refactored (API break).

0.4 - 2023-04-03

Added

• A new byte_span type akin to Go slices is used for IO ops.

• Actor channels now can transceive file descriptors.

• Support for Linux namespaces. Now you can set up sandboxes and run isolated actors (or just
the well-known containers).

• Modules ip and tls grew a lot. The API for sockets now supports IO ops on byte_span instances,
and plenty of new functions and classes (including UDP) were added.

• New modules.

◦ time: clocks and timers.

◦ pipe.

◦ unix: UNIX domain sockets.

◦ serial_port: serial ports.

◦ system: UNIX signals, CLI args, env vars, process credentials, and much more.

◦ file: file IO. Only available on systems with proactors (e.g. Windows with IOCP, and Linux
with io_uring). BSD can still be supported later (with kqueue + POSIX AIO).

◦ filesystem: portable path-manipulation, and plenty of filesystem operations & algorithms.

◦ stream: AWK-inspired scanner and common stream algorithms.

◦ regex: Basic regex functions. The interface has been inspired by C++, Python and AWK.

◦ generic_error: portable error comparison for filesystem, sockets, and much more.

◦ asio_error: errors thrown by the asio layer.

ChangeLog | 16

◦ websocket.

• Lua programs can define their own error categories now.

• Several new OS-specific APIs (e.g. Linux capabilities, and Windows' TransmitFile()).

• Add http.request.upgrade_desired().

• http.socket can work on top of UNIX domain stream sockets now.

• Documentation can now be installed as manpages.

• Support for io_uring.

Changed

• Upgrade to C++20. The motivating feature for the upgrade was std::atomic<std::weak_ptr<T>>.
However, other C++20 features are being used as well.

• Moved steady_timer to the new module time.

• tls.ctx renamed to tls.context.

• inbox.recv() renamed to inbox.receive()

• Module cond renamed to condition_variable.

• error_code.cat renamed to error_code.category.

• spawn_ctx_threads() renamed to spawn_context_threads().

• inherit_ctx renamed to inherit_context in spawn_vm().

• Now Emilua is less liberal on accepted values for env var EMILUA_COLORS.

• Finer-grained cancellation of IO ops.

• Locales are set at application startup.

• The build system now makes use of Meson’s wrap system.

Removed

• Removed println().

• Removed sleep_for. Its functionality has been replaced by the module time.

• Removed ip.tcp.resolver. Its functionality has been replaced by ip.get_address_info().

Fixed

• Bug fixes.

0.3 - 2021-03-04

Added

• HTTP request and response objects now use read-write locks and there is some limited sharing
that you can do with them without stumbling upon EBUSY errors.

ChangeLog | 17

• Improvements to the module system (that’s the main feature for this release). You should be
able to use guix as the package manager for your emilua projects.

• EMILUA_PATH environment variable.

• Native plugins API (it can be disabled at build configure time).

• Add logging module.

• Add manpage.

• --version CLI arg.

• Build configure options to disable threading.

Changed

• Use fmtlib from host system.

0.2 - 2021-01-31

Added

• Add HTTP query function: http.request.continue_required().

Changed

• Refactor module system. The new module system is incompatible with the previous one. Please
refer to the documentation.

• Numeric values for error codes changed.

Removed

• Remove failed_to_load_module error code. Now you should see "iostream error" or other more
informative error reasons upon a failed module load.

Fixed

• Fix build when compiler is GCC.

ChangeLog | 18

Tutorials

| 19

Getting started
Perhaps Lua’s best-known feature is its portability. Its reference implementation from PUC-Rio is
written in plain ANSI C and it’s very easy to embed in any larger program.

However limiting Lua to ANSI C has a high toll attached. Any useful program interacts with the
external world (i.e. it must perform IO operations), and approaching portability by limiting oneself
to ANSI C has consequences:

• Many useful IO operations don’t belong to ANSI C’s scope (you can’t even perform socket
operations).

• Not every operation will use the most efficient approach for the underlying system.

• There aren’t even APIs to create threads, nor to multiplex IO requests in the same thread, so at
most you can handle half-duplex protocols.

Another approach to portability — the one chosen by Emilua — is to have a different
implementation for every OS. So your Lua program can make use of portable interfaces that
require different underlying implementations. That also seems to be the approach taken by
luapower[1].

Furthermore, if efficient operations exist to deal with patterns specific to some OSes, they are
available when your Lua program runs in them (as long as they don’t conflict with the proactor
model[2]). For instance, you can make use of TransmitFile() when your program runs in Windows.
It’s expected that more of these interfaces will appear in future Emilua releases.

Hello World

print("Hello World")

Or, using the streams API:

local system = require "system"
local stream = require "stream"

stream.write_all(system.out, "Hello World\n")

Emilua doesn’t expose native handles (e.g. file descriptors, or Windows HANDLE objects) for the
underlying system directly. Instead they’re wrapped into IO objects that expose a portable & safe
interface (they’d also be type-safe in statically typed languages). You can’t accept connections on a
pipe handle, and Emilua doesn’t worry about such impossible use cases.

Many of the interfaces used in Emilua are inspired by Douglas C. Schmidt’s work
in Pattern-Oriented Software Architecture.

The standard stream handles — stdin, stdout, and stderr — are available in the module "system".

Getting started | 20

They model the interface for streams. The module "stream" contains useful functions to manipulate
these objects.

Many other types modeling streams exist in Emilua such as files, pipes, serial
ports, TCP and TLS connections.

A stream can be further broken down into read streams and write streams. system.out models a
write stream. Write streams contain the following method:

write_some(self, buffer: byte_span) → integer

Writes buffer into the stream and returns the number of bytes written.

On errors, an exception containing the error code generated by the OS is raised.

Writes are not atomic (unless guaranteed by the underlying system under certain scenarios). To
portably write the whole buffer into the stream, we must keep calling write_some() until the buffer
is fully drained (Emilua won’t automatically and inappropriately buffer data behind your back).
That’s what stream.write_all() does. Another boilerplate taken care of by stream.write_all() is
creating a network buffer out of a string object.

Async IO
In truly async IO APIs, the network buffer must stay alive until the operation completes. So — for
network buffers — Emilua uses a type independent of the Lua VM lifetime. If you call system.exit()
to kill the calling VM, the network buffers participating in outstanding IO operations will stay alive
until the respective operations finish (but killing the VM will also send a signal to cancel such
associated outstanding IO operations).

byte_span is modeled after Golang slices, but many more algorithms (mostly string-
related) are available as well.

The initiating function (such as read_some()) signals to the operating system that it should start an
asynchronous operation, but the operation itself hardly involves the CPU at all. So if there’s nothing
else to execute, the CPU would idle until notified of external events. Keeping the CPU spinning will
not make the IO happen faster. Making more CPU cores spin won’t make the IO operation run
faster. Once the request is sent to the kernel (and then further forwarded to the controller), the CPU
is free to perform other tasks.

That’s what async IO means. The IO operation happens asynchronously to the program execution.
However signaling that the IO operation has completed (the IO completion event) doesn’t need to be
asynchronous.

Delay not, Caesar. Read it instantly.

— Shakespeare, Julius Caesar, 3, I

Here is a letter, read it at your leisure.

Getting started | 21

— Shakespeare, Merchant of Venice, 5, I

— Quoted in "VMS Internals and Data Structures", V4.4, when referring to I/O system services

There is a lot more to this topic. However, for the Lua programmer, the topic ends here (pretty
boring, huh?).

Concurrent IO
The initiating function blocks the current fiber until the operation finishes. However, as we saw
earlier, this would be the perfect moment to perform other tasks and schedule more IO operations.

A trend we see in modern times is that of lazy frameworks to solve the async IO problem first and
foremost. Only then when their authors stumble on the problem of concurrent programming[3]

they’re forced to do something about it, and they keep ignoring it by offering lame ad-hoc tooling
around it[4]. Emilua is different. The first versions of Emilua were all focused on offering a solid
execution engine for concurrent programming. And once this foundation was solid, a new version
was released with plenty of IO operations integrated.

Emilua — as the execution engine — will schedule fibers and actors in a cooperative multitasking
fashion. Once the initiating function forwards the request to the kernel, Emilua will choose the next
ready task to run and schedule it (be it a fiber, be it an actor).

Emilua is focused on scalability and throughput. A solution for latency-oriented
problems could be offered as well, but as of this writing it doesn’t exist.

So, if you want to perform background tasks while the IO operation is in progress, just schedule a
new task before you call the initiating function.

Spawning new fibers

Just call spawn() passing the start function and a new fiber will be scheduled for near execution.

local system = require "system"
local stream = require "stream"
local sleep = require "time".sleep

spawn(function()
 -- WARNING: Please, do not ever use timers to synchronize
 -- tasks in your programs. This is just an example.
 sleep(1)

 stream.write_all(system.out, " World\n")
end):detach()

stream.write_all(system.out, "Hello")

Getting started | 22

Spawning new actors

Just call spawn_vm() passing the start module and a new Lua VM will be created and scheduled for
near execution.

local system = require "system"
local stream = require "stream"

if _CONTEXT == 'main' then
 spawn_vm('.')
 stream.write_all(system.out, "Hello")
else assert(_CONTEXT == 'worker')
 require "time".sleep(1)
 stream.write_all(system.out, " World\n")
end

Choosing between fibers and actors

Fibers share memory, and failing to handle errors in certain well-defined scenarios will bring down
the whole Lua VM. If you need a slightly higher degree of protection against dirty code, spawn
actors.

Lua VMs represent actors in Emilua. Different actors share no memory. That has an associated cost,
and it’s also inconvenient for certain common patterns. If you aren’t certain which model to
choose, go with fibers.

If you saturated your single-core performance already, an easy way to extract more performance of
the underlying system is most likely to spawn new threads. Lua isn’t a thread-safe language, so you
need to spawn more Lua VMs (i.e. actors), and a few threads as well.

You can also mix both approaches.

Hello sleepsort
One really useful algorithm to quickly showcase a good deal of design for execution engines is
sleepsort. In a nutshell, sleepsort sorts numbers by waiting N units of time before printing N, and
this process is executed concurrently for each item in the list.

local sleep = require('time').sleep

local numbers = {8, 42, 38, 111, 2, 39, 1}

for _, n in pairs(numbers) do
 spawn(function()
 sleep(n / 100)
 print(n)
 end)

Getting started | 23

end

The above program will print the numbers in sorted order.

Cancellable operations
IO operations might never complete, so serious execution engines will expose some way to cancel
them. There’s a huge tutorial just on this topic and you’re encouraged to read it: emilua-
interruption(7).

Adding a timeout argument for each operation is a lame way to solve this problem[5], and Emilua
wants no part in this trend. However, if that’s how you really want to solve your problems, here’s
one way to do it:

local sleep = require('time').sleep

function op_with_timeout(op, timeout)
 local f_op = spawn(op)
 local f_timer = spawn(function()
 sleep(timeout)
 f_op:interrupt()
 end)

 local ret = {f_op:join()}
 f_timer:interrupt()
 return unpack(ret)
end

-- USAGE EXAMPLE

local ip = require 'ip'

local acceptor = ip.tcp.acceptor.new()
acceptor:open('v4')
acceptor:set_option('reuse_address', true)
if not pcall(function() acceptor:bind(ip.address.loopback_v4(), 8080) end) then
 acceptor:bind(ip.address.loopback_v4(), 0)
end
print('Listening on ' .. ip.tostring(acceptor.local_address, acceptor.local_port))
acceptor:listen()

local sock = op_with_timeout(function() return acceptor:accept() end, 5000)
print(getmetatable(sock))

Final notes
That’s the gist of using Emilua. The interfaces mimic their counterpart in the non-async world, and
it’s usually obvious what the program is doing even when there’s a huge theoretical background

Getting started | 24

behind it all.

We try to follow the principle of no-surprises. One operation in Emilua is roughly equivalent to one
syscall in the underlying OS, and we just pass the original error (if any) unmodified for the caller to
handle instead of trying to do anything funny on the user’s back.

If you don’t need multitasking support, the program you write in Emilua won’t look much different
from a program written for an abstraction layer that just exposes small shims over the real syscalls.
If you can write programs for blocking APIs, you can write programs for Emilua.

When you do need multitasking, Emilua is perhaps the most flexible solution for Lua programs.
However, why is that so — how to make good use of all the tools, and what it’s really being offered
beyond the trivial — will be a topic of other tutorials.

Many of the topics barely scratched above could be further expanded into tutorials of their own.
Browse the documentation pages to see what topics catch your attention.

[1] https://luapower.com/

[2] The exception to this rule are filesystem operations. Filesystem operations are available in Emilua regardless of whether the
underlying system offers them as part of a proactor.

[3] Managing state, event notifications, wasteful pooling, forward progress, fairness, …

[4] Exceptions to this trend include Java’s LOOM, Erlang, and Golang.

[5] Latency-oriented frameworks are not part of this criticism. They have a good excuse for it.

Getting started | 25

https://luapower.com/

Working with streams
Streams are one of the fundamental concepts one has to deal with when working on IO. Streams
represent channels where data flows as slices of bytes respecting certain properties (e.g. ordering).

Emilua exposes two concepts to work with streams. Write streams are objects that implement the
method write_some():

write_some(self, buffer: byte_span) → integer

Writes buffer into the stream and returns the number of bytes written.

Similarly, read streams are objects that implement the method read_some():

read_some(self, buffer: byte_span) → integer

Reads into buffer and returns the number of bytes read.

Exceptions are used to communicate errors.

When the type of the stream is not informed (i.e. read or write), it’s safe to assume the stream
object implements both interfaces. Pipes are unidirectional, and separate classes exist to deal with
each. On the other hand, TCP sockets are bidirectional and data can flow from any direction.
Furthermore, many sockets allow one to shutdown one communication end so they can work
unidirectionally as well.

Short reads and short writes
Streams represent streams of bytes, with no implied message boundaries.

Each operation on a stream roughly maps to a single syscall[1], and it may transfer fewer bytes than
requested. This is referred to as a short read or short write.

Reasons why short writes occur include out of buffer space in kernels that don’t expose proactors.
The rationale for short reads is more obvious, and it should stay as an exercise for the reader (no
pun intended).

To recover from short reads and short writes, one just has to try the operation again adjusting the
buffer offsets. For instance, to fully drain the buffer for a write operation:

while #buffer > 0 do
 local nwritten = stream:write_some(buffer)
 buffer = buffer:slice(1 + nwritten)
end

The module stream already contains many of such algorithms. You may come up with your own
algorithms as well taking the business rules of your application into consideration (e.g. combining
newly arrived data into the next calls to write_some()). Alternatively, if you don’t need portable
code, and the underlying system offers extra guarantees, you may do away with some of this
complexity.

Working with streams | 26

Layering
Streams of bytes by themselves are hardly useful for application developers. Many patterns exist to
have structured data on top:

• Fixed-length records (binary protocols).

• Fixed-length header + variably-sized data payload (binary protocols).

• Records delimited by certain character sequences (textual protocols).

• Combinations of the above (e.g. HTTP starts with a textual protocol of CRLF-delimited fields, and
it might change to a fixed-length payload to read the body, and maybe change yet again to a
textual protocol to extract the resulting JSON data).

Given a single protocol might require multiple strategies, it’s important to offer algorithms that
don’t monopolize the stream object to themselves. The algorithms should be composable. The
algorithms found in the module stream follow this guideline.

This composition of algorithms naturally build layers:

• Raw IO. The IO interfaces exposed by the OS. There’s no interface for peeking data or putting
data back. Once the data is extracted out of the stream, it’s your responsibility to save it until
needed.

• Buffered IO. Just as short reads might happen, so can "long" reads. Upon dispatching the
message for processing that includes data until the delimiter, you must be careful to not discard
extra data that represents the start of the next message. Buffered IO is built on top of raw IO by
managing an user-space buffer (and an associated index for the current message) alongside
with the IO object.

• Formatted IO. Built on top of buffered IO integrating a parser (for input), and/or a generator (for
output). Now the user is no longer interacting with slices of bytes, but properly structured data
and messages.

It’s always easier to work with high-level formatted IO than low-level raw IO. However, when an
implementation for the target protocol doesn’t exist, you may have no other choice.

Emilua offers stream.scanner(3em) for generic formatted textual input.

Composed operations
As it may already be clear by now, many algorithms are compositions of raw IO operations. Unless
the IO object synchronizes access on its own (and explicitly says so), you should be careful to not
initiate extra IO operations that might affect the already in-flight operations for that object.

Concurrent writers operating on the same IO object is a common gotcha that causes corrupt
streams during high-load scenarios (if "atomic" writes are not guaranteed by the underlying
system). Suppose you’re generating line-delimited JSON objects on a UNIX stream socket. You’re
collecting info from various system services (e.g. "/run/acpid.socket"), and for each event, you
generate a new JSON object.

Working with streams | 27

our_service acpid socket

event 1001

json(event 1001)

event 3001

json(event 3001)

In other words, you’re multiplexing information from assorted sources. The same can happen on
the web when you’re orchestrating microservices and dumping information on a WebSocket
channel. Now, back to our example, if a short write happens, you might end up in the following
state:

writer1 writer2 write_all stream

stream, buf1

write_some(buf1)

stream, buf2

write_some(buf2)

buf1/N1

write_some(buf1:slice(N1))

buf2/OK

buf2/OK

buf1:slice(N1)/OK

buf1/OK

In other words, one of the messages didn’t fit in the kernel buffer, then stream.write_all() retried
the operation to drain the buffer. However there was already another in-flight write operation, and
it was scheduled first than buf1:slice(N1)). The end result will be a stream where the second
message is inserted in the middle of another message (a corrupt stream):

head of M1 M2 tail of M1

Working with streams | 28

This problem is not exclusive to async IO frameworks. The same behavior can be
observed if you code for blocking APIs making use of threads to achieve
concurrency.

To solve this problem, you should create a mutex to protect the write end of the stream:

scope(function()
 stream_write_mtx:lock()
 scope_cleanup_push(function() stream_write_mtx:unlock() end)
 stream.write_all(stream, event_json)
end)

Other network frameworks for scripting languages try to solve the problem transparently by
making use of an unbounded write buffer under the hood. However that’s solving the issue in the
wrong layer. If a write buffer is always used, the network framework can no longer appropriately
communicate which user-issued write operation caused an error. The way such frameworks
implement this solution is actually way worse as they face back-pressure issues as well, and have to
band-aid patch the API all over.

Emilua will not inappropriately entangle all IO layers — raw IO, buffered IO, formatted
IO — together. When you do want to make use of shared write buffers, you can write your own
socket + the buffer (and mutex) to abstract this pattern in a way that won’t cause problems to your
application.

Do notice that such problems don’t exist when composed operations use operations that don’t
overlap each other. For instance, you can use stream.read_all() and stream.write_all() on the
same object with no synchronization because such use won’t perform concurrent write_some() calls
nor concurrent read_some() calls.

Why EOF is an error
Same rationale as Boost.Asio[2]:

• The end of a stream can cause stream.read_all(3em), stream.read_at_least(3em), and other
composed operations to violate their contract (e.g. a read of N bytes may finish early due to
EOF).

• An EOF error may be used to distinguish the end of a stream from a successful read of size 0.

See also
• https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/

• https://sourceforge.net/p/asio/mailman/asio-users/thread/
5357B16C.6070508%40mail1.stofanet.dk/

[1] That applies to IO objects that expose system resources (e.g. TCP sockets). Higher-level abstractions built in user-space (e.g. TLS
sockets) don’t apply.

[2] https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/core/streams.html

Working with streams | 29

https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/
https://sourceforge.net/p/asio/mailman/asio-users/thread/5357B16C.6070508%40mail1.stofanet.dk/
https://sourceforge.net/p/asio/mailman/asio-users/thread/5357B16C.6070508%40mail1.stofanet.dk/
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/core/streams.html

Filesystem API
Emilua offers its own cross-platform filesystem API. The hard thing about a cross-platform
filesystem API is basically Windows. As Ryan Gordon (from the SDL fame) succinctly put it:

Windows. Windows is the problem.

• Windows wants you to mess with UTF-16 strings for Unicode filepaths,
everything else wants UTF-8.

• Windows wants you to use Win32 APIs, everything else uses POSIX.

• Windows wants you to use FILETIME (100-nanosecond increments since
1601), everything else uses POSIX (time_t, Unix epoch).

• Windows wants you to use '\\', everything else uses '/'.

• Windows has drive letters, everything else has mount points.

• Windows sorta has symlinks in modern times, many other things always
do. But some things don’t at all!

— https://github.com/libsdl-org/SDL/issues/8129#issue-1855143179

On top of what Ryan said, I’d add the following points:

• Windows wants you to mess with GetLastError(), everything else wants errno.

• Windows is case-insensitive, everything else is case-sensitive.

Except for case sensitivity, Emilua absorbs all of these problems on your behalf with an API that
abstracts such differences away. On top of that, it’ll use Microsoft’s own implementation for such
translation layers[1] when it’s running on Windows (meaning: if you decide to not use “Emilua”
abstractions because you don’t trust our knowledge of the Windows API you’re just avoiding
Microsoft’s own code which you can’t really do).

Of course a few non-Windows extensions are also offered. If you’re not (only) targeting Windows,
the common UNIX concepts are a must to have, and they’re here (otherwise you wouldn’t be able to
use Emilua to build containers which is something we also support).

The object filesystem.path
filesystem.path is the central piece in the architecture for our design. As the name implies, it
represents a path. On the Lua side, you just deal with UTF-8 encoding. Internally, this class will keep
the representation in the native format and translate to UTF-8 as needed to interact with Lua code.

local fs = require "filesystem"
local my_path1 = fs.path.new("/home/user")
local my_path2 = fs.path.from_generic("Downloads/music")

Filesystem API | 30

https://github.com/libsdl-org/SDL/issues/8129#issue-1855143179

There are two constructors. One takes the path in the native format. The other uses a generic
format. The generic format always use "/" as the directory separator. The native format receives no
special handling here as for what "/" might mean and just relies on the native directory separator
of the underlying platform (but it still handles conversions from UTF-8 to the native encoding).

When you’re composing paths, you can use the overloaded operators as they’ll automatically use
the native directory separator for the underlying platform:

function foobar(path)
 return path / "Downloads" / "myfile" .. ".txt"
end

You can also query their dynamic properties to perform path decomposition:

function foobar(path)
 return path.parent_path, path.filename
end

Or decompose them through iteration:

function foobar(path)
 for component in path:iterator() do
 print(component)
 end
end

Paths are immutable. Operations that modify a path always return a new path while the original is
left untouched.

No place in the Emilua API receives a string to handle file paths. You’ll need to use path objects
explicitly even in UNIX socket operations. This design helps to disambiguate cases where multiple
types are accepted but mean different things (e.g. program in system.spawn()). It also helps to
centralize platform differences related to path representation in a single class (e.g. just grep
through your codebase and you can easily refactor stuff around or look for wrong assumptions).

This class only handles the path itself. It’s just an in-memory representation. When you use its
member functions (e.g. lexically_normal()), you’re NOT doing any operation on the filesystem
itself. There’s no danger in committing filesystem operations by just playing with the path object
alone (that’s also why some functions are non-members as a hint to indicate that they might touch
the actual filesystem to complete their task).

Filesystem operations
The module filesystem presents plenty of useful functions such as:

• Directory iteration (flat and recursive).

Filesystem API | 31

• Path normalization algorithms (e.g. resolve symlinks, make relative to some base, etc).

• Create a directory and any missing parent.

• Copy subtrees.

• Manipulate links.

Any of these operations might fail and the platform will report the associated error. Emilua will just
propagate the original error to your program. If you want to handle the error portably you may call
the method togeneric() to convert the platform-specific error code into the POSIX errno-like object:

function handle_error(e)
 if e:togeneric() == generic_error.EEXIST then
 -- EEXIST on POSIX or
 -- ERROR_ALREADY_EXISTS on Windows
 return handle_eexist(e)
 else
 error(e)
 end
end

It’s important to preserve the original error when you’re actually trying to understand why an
operation fail on some platform. That’s why Emilua doesn’t try to hide it away under generic_error
automatically, and you must always opt-in for the translation here. Try to keep the original error
value in logs and only convert it to generic_error when you’re actually handling the error matching
it against a set of conditions your program is able to handle.

On Windows, the translation to POSIX error codes is done by code written by Microsoft. We do not
hardcode any mapping ourselves. That’s the closest as it gets to any form of official support from
the native platform. You can’t do any better than that, and you should feel safe to use the Emilua
API directly instead of trying to bypass it.

Async IO and threading
Unfortunately, async filesystem operations never really gained traction in any mainstream
operating system (and the scenario is unlikely to change). Read/write on files may make use async
IO, but moving files, iterating on directories, etc all rely on blocking operations. It’d be terribly
inefficient to create a thread for each of these operations. Using thread pools instead of plain
threads would also have huge drawbacks. Therefore, Emilua opts to just block on all of these
operations. If you need to perform operations from the module filesystem w/o blocking the current
thread, use spawn_vm{inherit_context=false} to spawn an actor in a new thread from which you can
unapologetically perform blocking operations.

[1] Microsoft’s implementation of the standard library for C++17.

Filesystem API | 32

Alternative projects
Table 1. General concurrency models

Fibers Threads Local actors Distributed
actors

Sandboxed
actors[1]

cqueues[2]

Tarantool[3]

Effil[4]

Lanes[5]

Löve[6]

ConcurrentLua
[7]

luaproc[8]

Emilua

Do notice that the table won’t go into many details. For instance, several projects allow you to use
threads, but only Emilua is flexible enough that it actually allows you to create heterogeneous
thread pools where some thread may be pinned to a single Lua VM while another thread is shared
among several Lua VMs, and some work-stealing thread pool takes care of the rest. Too many tables
would be needed to explore all the other differences.

Integrated IO engine also belongs to the comparison of concurrency models, but a separate table
solely focused on them will be presented later (only mentioning the projects that do have one).

Table 2. NodeJS wannabes

Fibers Threads Local actors Sandboxed
actors

Luvit[9]

LuaNode[10]

nodish[11]

Emilua (not a
NodeJS wannabe)

When you create a project that tries to bring together the best of two worlds, you’re also actually
bringing together the worst of two worlds. This sums up most of the attempts to mirror NodeJS API:

• If everything is implemented correctly, it can only achieve being as bad as NodeJS is.

• Horrible back-pressure.

Alternative projects | 33

Table 3. IO engines

Linux (epoll) Linux (io_uring) BSD (kqueue) Windows

cqueues

Tarantool

Luvit

LuaNode

nodish ugly[12]

Emilua

This document deliberately left some projects out of the comparison tables. The underlying reason
is that it focuses on one problem space: the traditional userspace-in-a-modern-OS-box. Projects such
as eLua[13], NodeMCU[14], XDPLua[15], and Snabb[16] will always have a space in the market. And the
reason is quite simple: it’s not possible to cater for very specific needs and be general at the same
time. For instance, if you’re trying to run something on the kernel side, there are specific
restrictions and concerns that will further contaminate every dependant project down the line. It’s
not merely a question of porting the same API over. The mindset behind the whole program would
need to change as well.

Emilua is young and there are plans to explore part of use cases that stretch just a little over the
traditional userspace-in-a-modern-OS-box. However it still is a general cross-platform solution for
an execution engine. It’s still not possible to tackle very specific use cases and be general at the
same time.

OpenResty
Most of the languages are not designed to make the programmer worry about memory allocation
failing. Lua is no different. If you want to deal with resource exhaustion, C and C++ are the only
good choices.

A web server written in lua exposed directly to the web is rarely a good idea as it can’t properly
handle allocation failures or do proper resource management in a few other areas.

OpenResty’s core is a C application (nginx). The lua application that can be written on top is hosted
by this C runtime that is well aware of the connections, the process resources and its relationships
to each lua-written handler. The runtime then can perform proper resource management. Lua is a
mere slave of this runtime, it doesn’t really own anything.

This architecture works quite well while gives productivity to the web application developer.
Emilua can’t just compete with OpenResty. Go for OpenResty if you’re doing an app exposed to the
wide web.

Emilua can perform better for client apps that you deliver to customers. For instance, you might
develop a torrent client with Emilua and it would work better than OpenResty. Emilua HTTP

Alternative projects | 34

https://openresty.org/

interface is also designed more like a gateway interface, so we can, in the future, implement this
interface as an OpenResty lib to easily allow porting apps over.

• Emilua can also be used behind a proper server.

• Emilua can be used to quickly prototype the architecture of apps to be written later in C++ using
an API that resembles Boost.Asio a lot (and IOFiber will bring them even closer).

• In the future, Emilua will be able to make use of native plug-ins so you can offload much of the
resource management.

• Emilua apps can do some level of resource (under)management by restricting the number of
connections/fibers/…

• Emilua won’t be that bad given its defaults (active async style, no implicit write buffer to deal
with concurrent writes, many abstractions designed with back-pressure in mind, …).

• The actor model opens up some possibilities for Emilua’s future (e.g. partition your app
resources among multiple VMs and feel free to kill the bad VMs).

[1] Linux namespaces, Landlock, or Capsicum

[2] https://github.com/wahern/cqueues: Designed “to be unintrusive, composable, and embeddable within existing applications”
[sic].

[3] https://www.tarantool.io/en/doc/2.1/reference/reference_lua/fiber/

[4] https://github.com/effil/effil

[5] http://lualanes.github.io/lanes/

[6] https://love2d.org/wiki/love.thread: Focused on game development.

[7] https://github.com/lefcha/concurrentlua: You could rewrite ConcurrentLua on top of Emilua, but you couldn’t rewrite Emilua on
top of ConcurrentLua.

[8] http://www.inf.puc-rio.br/~roberto/docs/ry08-05.pdf: It has a primitive model of what could become a full local actor system.

[9] https://luvit.io/

[10] https://github.com/ignacio/LuaNode

[11] https://github.com/lipp/nodish

[12] http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#WIN32_PLATFORM_LIMITATIONS_AND_WORKA

[13] https://eluaproject.net/

[14] https://nodemcu.readthedocs.io/

[15] https://victornogueirario.github.io/xdplua/

[16] https://github.com/snabbco/snabb

Alternative projects | 35

https://github.com/blinktrade/iofiber
https://github.com/wahern/cqueues
https://www.tarantool.io/en/doc/2.1/reference/reference_lua/fiber/
https://github.com/effil/effil
http://lualanes.github.io/lanes/
https://love2d.org/wiki/love.thread
https://github.com/lefcha/concurrentlua
http://www.inf.puc-rio.br/~roberto/docs/ry08-05.pdf
https://luvit.io/
https://github.com/ignacio/LuaNode
https://github.com/lipp/nodish
http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#WIN32_PLATFORM_LIMITATIONS_AND_WORKA
https://eluaproject.net/
https://nodemcu.readthedocs.io/
https://victornogueirario.github.io/xdplua/
https://github.com/snabbco/snabb

Internals

The target public for this document are C++ programmers who want to delve into
the project’s code, not lua users. Native plug-in authors should also read this page.

The intent of this page is not to detail every internal of the project, but just to give an overview of
the architecture. Details change quickly and documentation would lag behind, so they’re avoided.

Once you read it, you should be familiar with the assumptions made thoroughly the project, and
how to interact with the native code.

We assume that you already have some familiarity with the lua C API and Boost.Asio.

Multiple lua VMs
The project allows multiple OS threads to call asio::io_context::run(), so lua VMs can jump from
one thread to another freely, but they will always refer to the same asio::io_context and each will
be protected by its own ASIO strand.

-- Instantiates a new lua VM that shares
-- the caller's `asio::io_context`
spawn_vm(module)

-- Instantiates a new lua VM in a new
-- thread with its own `asio::io_context`
spawn_vm{ module=module, inherit_context=false }

You must specify a lua module name to run in the new VM, not a function. The module will be
loaded and run in the new VM.

The only way for two different lua VMs to communicate is message passing. The channels are given
when you instantiate the extra VMs. The channels accept a range of different values and will deep-
copy them. You can also send references to IO objects, but the original references will be rendered
unusable (their metatables are unset). Do pay attention to not let objects that have pending
operations to be sent over (EBUSY, but do create an error code just for that).

Nor synchronization primitives (such as mutex) nor fiber handles can be sent over the channels and
by implication can’t be used to synchronize (or send cancellation requests to) fibers running in
different lua VMs.

You can also send a channel over a channel. This will only send the channel “address” over and will
allow complex routing among the lua VMs. If you send a channel’s rx-end, the other side will
receive a tx-channel anyway. On the C++-side, we need to implement a MPSC strand-based channel.

These characteristics should be enough to implement actor patterns. And it is not the job of emilua
to enforce good patterns on applications. The patterns can be configured purely in the lua side of
coding.

Internals | 36

-- Spawn extra threads to the
-- caller's `asio::io_context`
spawn_context_threads(count)

Leaving the actor model aside for a moment, it’s now easy to have threads with work-stealing (e.g. 8
lua VMs sharing the same asio::io_context running on 4 threads) so you don’t have to worry about
load-balancing.

Inside a single lua VM
When you issue some IO operation (including chan:receive()), the calling fiber will suspend, but
other fibers from the same lua VM are allowed to kick in (cooperative multitasking). Fibers can
share state with each other safely (and free from contention problems) as-if the program was
single-threaded.

-- Spawn a new fiber on this lua VM
spawn(fn)

You can use the fiber handle just like you’d use a thread handle. There is join(), detach() and
interrupt().

All sync primitives obey some characteristics thanks to the restrictions we’ve laid out:

• They always live in the same strand. They never migrate strands.

• They don’t synchronize with fibers from other strands (except for channels, but that’s another
story).

Given these conditions, it’s now easier to implement and reason about the C++ code.

Only the C++ code that suspended the fiber can resume it back. If the operation should be
cancellable, the async op should set an interrupter before suspending the fiber. No other code from
the runtime will wake this fiber up. Once the interrupter is called, it’ll be cleared automatically to
prevent further complications on the async op implementation. The completion handler should
also clear the interrupter to make sure it won’t be (wrongly) reused for other operations.

A good level of serialization can be done by exploring these properties and simplify the
implementation a lot. For once, you know no other code will wake the fiber up, so you can just as
well call io_obj.cancel() on the interrupter and map asio::error::operation_aborted to
errc::interrupted on the completion handler. A single handler (and no other) will take care of
waking the fiber. There is no race to deal with here or anything alike.

A lot of the boilerplate is handled already on the prologue/epilogue functions from vm_context.

Userdata practices
Besides the common practices to create custom objects through userdata, Emilua (IO) objects will

Internals | 37

also:

• Hide the metatable. By doing that, user code is prevented from changing the metatable (the
metatable is just an usual table after all) that native code relies on.

• Assume lua_setmetatable() is an indivisible operation for userdata (i.e. if it fails, it doesn’t set a
metatable nor any __gc metamethod). This assumption is important to simplify object
management by getting away with all pre-initialization tricks teached on Roberto’s manuals and
associated complexities.

• Assume lua_setmetatable() reports errors through exceptions (i.e. it always returns 1). This is a
superset of the previous point and it is guaranteed by the VM[1]. We don’t really care as much
about this point, but as it is guaranteed, the assumption described in the previous point (which
we do care about) is covered as well.

C++ async operations
Let’s begin with require().

require()'ing a module is also an async operation which will suspend the caller fiber. Every module
has its own isolated environment (i.e. a new lua thread is created for every module and that
thread’s environment is configured to use a separate lua table) sharing the same lua VM. The
module’s entry point is an user-provided source code evaluated to prepare the environment with
the names that should be exported to the caller fiber. But this preparatory step may not be
immediately ready and may need to call other async operations. The rule we define to mark a
module as loaded and ready is when its main fiber finishes (synchronization code similar to
fiber:join()).

To further enforce a more manageable project layout, it is only allowed to import new modules
from the main fiber. This may introduce a “slow” startup in some project layouts, but:

• It is simpler to reason about the relationship of exported/imported names if we restrict them to
the same main fiber. One such use we do of this feature is detecting whether the inbox module
was loaded and close it if not.

• We are explicitly not aiming for remote modules (e.g. JS running on a web browser), so we don’t
need to care about slow startup happening in this event.

• In the cases where some module startup is indeed slow, the module programmer himself can
adopt lazy loading techniques within his module’s functions to have a quick startup with
respect to the rest of the application.

Modules evaluate only once and are cached. We never unload them. We keep a reference to their
lua thread for as long as the lua VM is active.

Loading a module forms a loader-loaded relationship. This relationship builds a chain that must be
checked when a new module is require()d (so we can for instance prevent cyclic imports). But each
module will have its own environment. This means the C++ function that implements require()
needs to check lua-hidden state associated with the caller lua function (not a global one). That’s the
module system state per-module.

Internals | 38

Rule
The per-module state is stored by using the module’s main thread as a key in the
fibers table. The fibers table is strong, but this isn’t a problem because the module
shall never be unloaded anyway. Code that unrefs fiber coroutines shall check
whether the lua thread represents a module and skip removing it from the fibers
table if so.

We can’t store the module system data directly at the thread environment because lua code can
change the thread environment by calling setfenv(0, table).

We’ve already gone through the trickiest parts and added the most important restrictions to the
table (no lua-related pun intended), so the remaining rules should be quick’n’easy to catch.

When you initiate an async operation, the C++ side will copy the lua_State* to handle the
completion (or cancellation) later. However, any LUA_ERRMEM will trigger an emilua-call to
lua_close() and L may then be invalid when we later try to resume it. So the completion handler
need to check whether the vm is still valid before accessing it and this is the purpose of the
vm_context structure (also protected by the same strand as the vm).

this_fiber
As long as lua code is executing, there is a current fiber and this property stays unchanged for as
long as control doesn’t return to host.

transparent, adj.

Being or pertaining to an existing, nontangible object.

It’s there, but you can’t see it

— IBM System/360 announcement, 1964

virtual, adj.

Being or pertaining to a tangible, nonexistent object.

I can see it, but it’s not there.

— Lady Macbeth

This property is mostly transparent to lua code. Which is to say that the programmer is aware of
this property, but there isn’t a tangible object that it can track back to this_fiber. This is mostly
true, but there is a quite tangible this_fiber lua global object that the user can inspect — exposed at
the beginning of the first thread execution.

However, this_fiber being a global is shared among all the fibers, so it can’t point to a single fiber.
Instead, it will query which fiber is current and do operations on it.

C++ async ops will always store which fiber is current to know how to resume it back. And before a

Internals | 39

fiber is resumed, this info is stored at a know lua registry’s index so future async ops will get to
know about it too. The reason why we can’t rely on the L argument passed to C functions registered
at the VM and the current fiber needs to be remembered is because there will be a L that points to
the wrong lua thread as soon as the user wraps some function in a coroutine.

This design works well because we don’t mix responsibilities of the scheduler with user code (as is
the case for Fiber#resume in Ruby which would be better suited by a Fiber#spawn() that accepts post
/dispatch execution policies and would avoid the (un-)parking unsound ideas altogether).

Asynchronous event notification
Some events are intrusive and will be generated even when no thread/fiber asked for them. The
classical example are UNIX signals. A sighandler must be registered to handle them, but that begs
the question: from which thread are these functions called? In the C world there are multiple
answers:

SIGEV_SIGNAL

The handler will be called asynchronously from any thread. That means a lot of restrictions to
what a sighandler can do.

SIGEV_THREAD

The handler will be called from an unspecified thread. Now we have way less restrictions, but
some still exist (e.g. unsafe thread-local variables and thread cancelability state).

SIGEV_KEVENT

The golden standard for event multiplexing in the C world.

Generally the need for asynchronous events spurs from bad design and should be avoided.
However when integrating lua code to existing libraries we must deal with asynchronous events
now and then. Emilua reserves a lua coroutine/thread for which no suspension is ever allowed and
that will give the lua user a mix between SIGEV_SIGNAL and SIGEV_THREAD restrictions. From the
handler the user can notify a condition variable to achieve friction-less handling from a different
fiber similar to what SIGEV_KEVENT enables.

From the C++ side, one just needs to get the asynchronous event (lua) thread and rely on
lua_pcall() (no need for complex lua_resume() handling, nor fiber APIs).

LUA_ERRMEM
Lua code cannot recover from allocation failures. As an example (and single-VM only):

my_mutex:lock()
scope_cleanup_push(function() my_mutex:unlock() end)

If the VM fails to allocate the closure passed to scope_cleanup_push(), my_mutex will be kept locked
and the lua code inside that VM will be in an unrecoverable state. There’s no pattern or ordering to
make resource management work here as allocation failures can happen almost anywhere and we

Internals | 40

then inherit some constraints and reasoning from preemptive scheduling. The only option (and this
applies to any allocation failure reported by the lua VM when running arbitrary user code) is to
terminate the VM from the C++-side.

When lua_close() is called, there is no guarantee pending operations will be canceled as they might
hold strong references to the underlying IO object preventing its destructor from getting called.
Therefore, the vm_context structure also holds an intrusive container of polymorphic elements
which are destroyed after lua_close() is called and can be used to register cleanup code to avoid
such leaks. If the operation finishes, the IO object is free to reclaim their own objects from this
container and use them for other purposes.

lua_CFunction objects should never call lua_close(). If they detect LUA_ERRMEM all they have to do is to
mark the flags field from vm_context and suspend the fiber. The host will take care of closing
lua_State* and extra cleanup when it recovers control of the thread.

The other side of the coin is to detect LUA_ERRMEM. All interactions with the VM from the C API
happens through the virtual stack, so naturally that’s the first concern. You must not push anything
on the stack if there’s no extra free stack slot available. To check for such slot space, there’s
lua_checkstack().

The usual C function signature is not enough to convey all the semantics required by the Lua C API.
On the Functions and Types section from the manual, we verify the following information:

Here we list all functions and types from the C API in alphabetical order.
Each function has an indicator like this: [-o, +p, x]

[…] The third field, x, tells whether the function may throw errors: '-' means
the function never throws any error; 'm' means the function may throw an
error only due to not enough memory; 'e' means the function may throw
other kinds of errors; 'v' means the function may throw an error on
purpose.

The 5.1’s signature for lua_checkstack() is:

int lua_checkstack(lua_State *L, int extra); // [-0, +0, m]

That’s obviously bogus. If lua_checkstack() can throw on ENOMEM that means there is no possible safe
interaction with the VM. That’s — plain and simple — a bug. This bug was fixed in Lua 5.2 when the
signature changed to:

int lua_checkstack(lua_State *L, int extra); // [-0, +0, –]

Lua 5.2 received a few other improvements concerning ENOMEM such as obsoleting
lua_cpcall() by introducing light C functions. API-wise, Lua 5.2 was a great release
as it fixed many shortcomings.

Internals | 41

http://www.lua.org/manual/5.1/manual.html#3.7

You don’t always need to call lua_checkstack() before doing anything thanks to at least LUA_MINSTACK
free stack slots being guaranteed for you when the VM calls into your lua_CFunction objects. And
here’s where things start to get tricky. Consider the following Lua code:

coroutine.wrap(function()
 spawn(function()
 print('Hello World')
 end)
end)()

The underlying C function implementing spawn() is exposed to 3 different lua_State* handles:

Current fiber

get_vm_context(L).current_fiber(). The one that calls coroutine.wrap().

Inner coroutine

The L parameter from lua_CFunction. The one that calls spawn().

New fiber

lua_newthread(L) return value. The one to print “Hello World”.

If lua_error() is called on L, the stack for L will be in a completely deterministic state. Anything this
lua_CFunction object pushed on the stack will be popped and the whole pcall()-chain on the state L
will be respected too. However lua_error() might be called indirectly through other API functions.
That’s the signature for lua_newtable():

void lua_newtable(lua_State *L); // [-0, +1, m]

As we’ve seen previously:

'm' means the function may throw an error only due to not enough memory

“Throw” here means sorts of a call to lua_error() (LUAI_THROW to be more accurate). That’s the
pcall()-chain and each lua_State has its own (this property won’t change even if you compile the
Lua VM as C++ code). This independent pcall()-chain for each lua_State is not a limitation from the
C API, but an accurate model of the underlying machinery happening in Lua code itself. Consider
the following snippet:

c1 = coroutine.create(function()
 pcall(function()
 -- ...
 end)
end)

If c1 is suspended in the middle of pcall(), it retains this private pcall()-chain that doesn’t get
mixed with pcall()-chains from other coroutines (i.e. the other lua_State* handles). Therefore the C

Internals | 42

API accurately maps the language behaviour on retaining a private pcall()-chain for each
lua_State and we can’t expect any different behaviour here really. Lua documentation on the issue
has been ironed out little-by-little throughout its releases. Lua 5.3 was the one to finally explicitly
state the behaviour we just described:

The panic function, as its name implies, is a mechanism of last resort.
Programs should avoid it. As a general rule, when a C function is called by
Lua with a Lua state, it can do whatever it wants on that Lua state, as it
should be already protected. However, when C code operates on other Lua
states (e.g., a Lua argument to the function, a Lua state stored in the registry,
or the result of lua_newthread), it should use them only in API calls that
cannot raise errors.

— Lua 5.3 Reference

In short, that means our spawn() implementation that is exposed to the {L, current fiber, new fiber}
triple would throw to the wrong pcall()-chain if it calls lua_newtable(new_fiber). The solution is to
use lua_xmove() when necessary and maintain rigorous discipline as to which C API functions are
called on “foreign” lua_State* handles paying very special attention to their respective throw
specifications. As for the discipline required, Rici Lake wrote a good summary on the lua-users
wiki:

There are quite a number of API functions which will never throw a Lua
error. API functions that throw errors are identified in the reference
manual as of 5.1.3. First, none of the stack adjustment functions throw
errors; this includes lua_pop, lua_gettop, lua_settop, lua_pushvalue,
lua_insert, lua_replace and lua_remove. If you provide incorrect indexes to
these functions, or you haven’t called lua_checkstack, then you’re either
going to get garbage or a segfault, but not a Lua error.

None of the functions which push atomic data — lua_pushnumber,
lua_pushnil, lua_pushboolean and lua_pushlightuserdata ever throw an
error. API functions which push complex objects (strings, tables, closures,
threads, full userdata) may throw a memory error. None of the type enquiry
functions — lua_is*, lua_type and lua_typename — will ever throw an error,
and neither will the functions which set/get metatables and environments.
lua_rawget, lua_rawgeti and lua_rawequal will also never throw an error.
Aside from lua_tostring, none of the lua_to* functions will throw an error,
and you can avoid the possibility of lua_tostring throwing an out of
memory error by first checking that the object is a string, using lua_type.
lua_rawset and lua_rawseti may throw an out of memory error. The
functions which may throw arbitrary errors are the ones which may call

Internals | 43

http://www.lua.org/manual/5.3/manual.html#4.6
http://lua-users.org/wiki/ErrorHandlingBetweenLuaAndCplusplus
http://lua-users.org/wiki/ErrorHandlingBetweenLuaAndCplusplus

metamethods; these include all of the non-raw get and set functions, as well
as lua_equal and lua_lt.

On a side note, Lua 5.2 added the following:

If an error happens outside any protected environment, Lua calls a panic
function (see lua_atpanic) and then calls abort, thus exiting the host
application. Your panic function can avoid this exit by never returning (e.g.,
doing a long jump to your own recovery point outside Lua).

The panic function runs as if it were a message handler (see §2.3); in
particular, the error message is at the top of the stack. However, there is no
guarantees about stack space. To push anything on the stack, the panic
function should first check the available space (see §4.2).

— Lua 5.2 Reference

That’s actually behaviour that already existed on the version 5.1. An alternative panic function
could just throw a C++ exception to implement this __attribute__((noreturn)) behaviour. However
this hypothetical panic function is not an alternative solution to our problems due to the
combination of the following facts:

• As described elsewhere in this document, we require lua_error() to act as-if it throws a C++
exception so our destructors are properly called. That requires the underlying Lua VM (LuaJIT
in our case) to throw and catch C++ exceptions.

• A C++-throw is triggered from lua_newtable(L). The type thrown here is internal to the Lua VM
and we cannot throw it ourselves. LUA_ERRMEM information is correctly preserved.

• A panic is triggered from lua_newtable(new_fiber). Our panic function would in turn discard
LUA_ERRMEM and throw a generic C++ exception.

• On lua_newtable(new_fiber) hitting LUA_ERRMEM, the L's C++-catch handler wouldn’t receive the
original error (LUA_ERRMEM). That means information loss. That means our host code (the code
that first calls into the Lua VM) won’t call lua_close() (when it should) as its lua_pcall()
/lua_resume() call might not report the correct error reason (LUA_ERRMEM). That also means the
possibility to unwind the wrong number of cascaded pcall() blocks (a pcall() from Lua code is
not supposed to handle LUA_ERRMEM — if correctly detected — so the number of blocks unwinded
differs whenever LUA_ERRMEM is involved).

• Although LuaJIT can catch generic C++ exceptions, it lacks context and cannot possibly restore
the stack state on each lateral lua_State* handle at play (the triple {L, current fiber, new fiber}
in our case). If the spawn() lua_CFunction had a value pushed on the current_fiber stack when a
new_fiber panic-triggered exception raises, the value on the current_fiber stack wouldn’t be
properly popped by the time L handles the C++ exception (and do remember that L is executing
nested on top of current_fiber so you can already imagine the chaos here). In short, the Lua VM
needs our cooperation to maintain some invariants.

• By wrapping these calls into our own C++ catch blocks we could work around some of these

Internals | 44

http://www.lua.org/manual/5.2/manual.html#4.6

issues, but the thought that thread control would still return to the Lua VM one last time after
the panic handler got called is just too scary and previous mailing list threads on this topic
weren’t very reassuring. For one, if the exception is panic-triggered by current_fiber, we won’t
know what remains on this stack (except for the stack top), but that’s exactly the lua_State that
the host is operating on when our lua_CFunction got called on L. Even if control does return
safely to our host it would still have problems to deal with there.

That covers our policy when implementing lua_CFunction objects. In short, we cannot resort to Lua
panics here and the only real solution is the rigorous discipline on C API usage mentioned earlier.

Now let’s talk about our policy for host code. The Lua suspending IO functions are implemented by
querying which fiber is current and scheduling a lua_resume() on it as the callback for some
Boost.Asio supported C++ async_*() function (plus a ton of other details properly documented
elsewhere on this document such as strand handling and so on). The initiating function is called
from the Lua VM, but the callback is not. The callback will act as the host.

Back to lua_resume(), this function itself doesn’t throw:

int lua_resume(lua_State *L, int narg); // [-?, +?, –]

However the code that runs before lua_resume() might throw. This is the code that pushes the
arguments to the coroutine. For instance, if a string is one of the coroutine parameters, you will
have to use C API that might throw on ENOMEM:

void lua_pushlstring(lua_State *L, const char *s, size_t len); // [-0, +1, m]

It’s no use trying to call lua_pcall() to wrap lua_pushlstring() here. lua_state() now returns
LUA_YIELD and that means you can’t use lua_pcall() on this lua_State* handle. You can’t create a
new handle and use the lua_xmove() trick either as lua_newthread() itself can throw on ENOMEM:

lua_State *lua_newthread(lua_State *L); // [-0, +1, m]

Fear not, for here is the place where we can finally use a panic function to throw a custom C++
exception. There are only two caveats. The first one is related to LuaJIT having such tight
integration with native exceptions that it makes (almost) no distinction between lua_pcall() and
C++ catch frames[2]. The net result is that you can use C++'s catch-all blocks and then no panic
function will ever be involved (by now you must be feeling that we just travelled to the farthest
candy shop in the kingdom just to make a full-turn just one block away from destination when we
changed our minds and decided to go on the neighbour’s candy shop). Despite the lack of a real
panic function throwing our own exceptions, I’ll still use the same previous terminology (i.e. panic-
triggered exceptions).

The second caveat is a little charming race to avoid. The completion handler doing the host job is
executed through the strand that protects the VM. If we let the exception escape the completion
handler, another thread might try to use the VM before we have the chance to close it. In other
words, the following approach has a race and thus is not used:

Internals | 45

https://www.freelists.org/post/luajit/LuaJIT-ObjectiveC-throw-in-lua-atpanic-clang-infinite-recursion,5
https://www.freelists.org/post/luajit/LuaJIT-ObjectiveC-throw-in-lua-atpanic-clang-infinite-recursion,5
https://www.freelists.org/post/luajit/LuaJIT-ObjectiveC-throw-in-lua-atpanic-clang-infinite-recursion,5
https://www.freelists.org/post/luajit/LuaJIT-ObjectiveC-throw-in-lua-atpanic-clang-infinite-recursion,5
https://www.freelists.org/post/luajit/LuaJIT-ObjectiveC-throw-in-lua-atpanic-clang-infinite-recursion,5

for (;;) {
 try {
 // Completion handler allows the panic
 // exception to escape here.
 ioctx.run();
 break;
 } catch (...) {
 // This is a bug. This code isn't executed
 // through the VM strand. A pending operation
 // that just finished could try to access
 // `current` from another thread while we're
 // here.
 vm_context* current = ...;
 current->close();
 continue;
 }
}

Therefore, it is responsibility from the completion handler to handle the panic-triggered exception
(sorry about the boilerplate on your side, but that’s the way it is).

try {
 // lua_push*() calls
} catch (...) {
 vm_ctx->close();
 return;
}
int res = lua_resume(fiber, narg);

That is enough to cover the policy for host code and finally finish the LUA_ERRMEM discussion too.

Channels and resources
The biggest challenge to cross-VM resource management are the multi-strand sync primitives (i.e.
the channels). They have to execute code that jumps from one strand to another to finish their jobs.
If the associated execution context already finished, then they would be stuck forever. The solution
is for them to keep the execution context busy through a work guard.

However some rules are needed to make this work:

• Rx-channels (i.e. inbox) don’t keep work guards.

• Tx-channels keep a work guard to the other end while they are alive. But they only keep a work
guard to their own strands when they have an active operation.

If the tx-channels are not closed, they will prevent execution contexts that are no longer necessary
from being destroyed. But that’s the best we can do. We could periodically call the GC to free
unused channels, but so will lua code anyway and there’s nothing left for us to do on the C++ side. A

Internals | 46

good practice for lua code would be to add the following chunk at the beginning of the fiber who’s
gonna process the actor messages:

scope_cleanup_push(function() inbox:close() end)

Extra rules for channels management:

• As an extra safety measure, if the main fiber finishes and inbox wasn’t imported, the runtime
closes it.

• Channels (tx and rx) also get closed when the VM is terminated.

• Channels must only upgrade their weak references to vm_context once they migrated to the
target strand. Otherwise, they would prevent the VM from auto-closing (and hairy problems
would follow).

The exception mechanism
C++ exceptions must not be used to propagate errors across lua/C++ frames. However, lua errors
may simply trigger stack unwinding (the code makes heavy use of setjmp()) and we do depend on
RAII to keep the code correct.

It is assumed that any call to lua_error() will behave as-if it throws a C++ exception (thus triggering
our destructors). We require some support from the luaJIT VM for this. Specifically, we can’t rely on
the “no interoperability” category from their “exception” section on the “extensions” page because
the following restriction:

Throwing Lua errors across C++ frames will not call C++ destructors.

To make matters worse, the feature we do depend on only appears in the the “full interoperability”
category:

Throwing Lua errors across C++ frames is safe. C++ destructors will be
called.

A different approach would be to implement an exception mechanism in terms of coroutines
(although it’d add to code complexity):

Exceptions < Coroutines < Continuations

Exceptions can be thought of as a subclass of coroutines. You can implement
an exception mechanism with coroutines.

— leafo, leafo.net

But this path would be a dead-end as native lua errors would still be reported through lua_error().
For luaJIT, lua_error() plays well with our code because:

Internals | 47

http://luajit.org/extensions.html#exceptions
http://leafo.net/posts/itchio-and-coroutines.html#overview-of-coroutines

The LuaJIT VM is fully resumable. This means you can yield from a
coroutine even across contexts, where this would not possible with the
standard Lua 5.1 VM: e.g. you can yield across pcall() and xpcall(), across
iterators and across metamethods.

— http://luajit.org/extensions.html#resumable

Wasn’t for this guarantee, the project would be monstrous. To understand why this guarantee is
important, let’s unravel the fundamental pattern for fibers support. We always implicitly wrap
every user code inside a lua coroutine:

local fib = coroutine.create(user_fn)

So async operations can suspend the calling fiber and resume them later.

But user_fn might very well contain a pcall() and execute our suspending async function inside it:

function user_fn()
 pcall(function()
 io_obj:emilua_async_op()
 end)
end

The exception mechanism should not block our ability to suspend fibers. When our own native
code calls lua_yield() to suspend a fiber, the suspension mechanism should be able to cross the
pcall() barrier.

To wrap all up so far, the standard lua exception mechanism is used to report errors. The only
difference is that emilua will lua_error() a structured error object inspired by std::error_code for
our own errors.

Things would get a little tricky on the following point that we raised previously though:

[…] and we do depend on RAII to keep the code correct.

Imagine we have some code like the following:

class reference
{
public:
 reference() : L(nullptr) {}

 reference(lua_State* L)
 : L(L)
 , idx(luaL_ref(L, LUA_REGISTRYINDEX))
 {}

Internals | 48

http://luajit.org/extensions.html#resumable

 ~reference()
 {
 if (!L)
 return;

 luaL_unref(L, LUA_REGISTRYINDEX, idx);
 }

 reference(reference&& o)
 : L(o.L)
 , idx(o.idx)
 {
 o.L = nullptr;
 }

 lua_State* state() const
 {
 return L;
 }

 void push() const
 {
 assert(L);
 lua_pushinteger(L, idx);
 lua_gettable(L, LUA_REGISTRYINDEX);
 }

private:
 lua_State* L;
 int idx;
};

If an object of this type has its destructor called on lua_error()-triggered stack unwinding, it means
we’re manipulating the lua_State* (luaL_unref(L) in this example) on stack unwinding (i.e. outside
of a lua-catch block which would be just after a pcall() return). If the VM is not in a safe state for
manipulations at this moment (this scenario just doesn’t happen if you stick with plain C which is
the target lua was developed for) then we’re screwed. Luckily, the VM can handle such situations
just fine as it is hinted on the luaJIT documentation:

static int wrap_exceptions(lua_State *L, lua_CFunction f)
{
 try {
 return f(L); // Call wrapped function and return result.
 } catch (const char *s) { // Catch and convert exceptions.
 lua_pushstring(L, s);
 } catch (std::exception& e) {
 lua_pushstring(L, e.what());
 } catch (...) {

Internals | 49

 lua_pushliteral(L, "caught (...)");
 }
 return lua_error(L); // Rethrow as a Lua error.
}

— http://luajit.org/ext_c_api.html#mode_wrapcfunc, Recommended usage pattern for LUAJIT_MODE_WRAPCFUNC

This guarantee is promised again (although this version of the promise is read-only) in their
“extensions” page (and again only at the full interoperability category):

Lua errors can be caught on the C++ side with catch(…). The corresponding
Lua error message can be retrieved from the Lua stack.

— http://luajit.org/extensions.html#exceptions (emphasis mine)

The final piece for our puzzle is related to async ops converting std::error_code into lua exceptions
(i.e. lua_error()). The completion handler for async ops is not called in a lua context, so they cannot
just call lua_error() and hope the correct context will catch the exception (there’s no API similar to
resume_with() from Boost.Context). They need to return control to the native code that suspended
the fiber so it can throw a lua exception before control returns to lua code.

This guarantee used to exist on luaJIT 1.x (which included Coco):

Now, if the current coroutine has an associated C stack, lua_yield() returns
the number of arguments passed back from the resume.

— http://coco.luajit.org/api.html#lua_yield

The lack of allocated C stacks brings more complications to the implementation that will be
discussed later. lua_yieldk() from Lua 5.2 would be enough for us (and cheaper!), but we don’t
have that either.

Yet another option would be to set an one-time hook to be called immediately just before resuming
the lua coroutine, but it’d present challenges in the future if we ever add debugging support, so it is
avoided.

And the solution Emilua get away with is wrapping the C function inside a lua function. The C
function returns a 2-tuple. If the first argument is not nil, the lua function itself will take care of use
it to raise an error.

local error, native = ...
return function(...)
 local e, v = native(...)
 if e then
 error(e)
 else
 return v
 end

Internals | 50

http://luajit.org/ext_c_api.html#mode_wrapcfunc
http://luajit.org/extensions.html#exceptions
https://www.boost.org/doc/libs/1_67_0/libs/context/doc/html/context/ff.html#context.ff.executing_function_on_top_of_a_fiber
https://www.boost.org/doc/libs/1_67_0/libs/context/doc/html/context/ff.html#context.ff.executing_function_on_top_of_a_fiber
http://coco.luajit.org/api.html#lua_yield
https://www.lua.org/manual/5.2/manual.html#lua_yieldk
https://github.com/LuaJIT/LuaJIT/issues/48
https://github.com/LuaJIT/LuaJIT/issues/48

end

User-coroutines
Let’s jump straight to a topic that gives some sense of continuity to the previous section. The pcall()
barrier is not the only barrier that the user can insert to prevent lua_yield() from suspending the
fiber. The user might very well just wrap calls using coroutine.create():

function user_fn()
 coroutine.create(function()
 io_obj:emilua_async_op()
 end)
end

Rule
Lua’s coroutine module must never be directly exposed to lua code.

The problem is solved by exposing a different coroutine module — a small shim over the original
one. This version inspects this_fiber's suspension reason (native code or lua code).

Conceptually, the implementation looks like this:

function coroutine.resume(co, ...)
 if _G.busy_coroutines[co] then
 -- CORUN
 error("cannot resume running coroutine", 2)
 end

 local args = {...}
 while true do
 local ret = {raw_coroutine.resume(co, unpack(args))}
 if ret[1] == false then
 return unpack(ret)
 end
 if _G.this_fiber.native_yield then
 _G.busy_coroutines[co] = true
 args = {raw_coroutine.yield(unpack(ret, 2))}
 _G.busy_coroutines[co] = nil
 else
 return unpack(ret)
 end
 end
end

function coroutine.yield(...)
 if _G.fibers[raw_coroutine.running()] ~= nil then

Internals | 51

 error("bad coroutine", 2)
 end
 return raw_coroutine.yield(...)
end

function coroutine.status(co)
 if _G.busy_coroutines[co] then
 return "normal"
 end

 return raw_coroutine.status(co)
end

function coroutine.running()
 local co = raw_coroutine.running()
 if _G.fibers[co] ~= nil then
 -- Fiber's coroutines work just like the main coroutine
 return nil
 end

 return co
end

coroutine.create = ...
coroutine.wrap = ...

Dead fibers
When an exception escapes the fiber stack, the hook registered with sys.set_uncaught_hook() is
called. The default hook prints the stack trace to stderr and additionally terminates the VM if the
exception escaped from the main fiber. If the custom hook itself fails, the default hook is then called
anyway.

Scope handlers are properly popped and called after the hook returns control of the thread to the
runtime.

The hook is only called for detached fibers. Therefore, a different behaviour can be chosen for each
join()ed fiber. Also, if the fiber isn’t explicitly detach()ed, the hook action will be deferred until
some GC round.

There isn’t a pcall block around the whole program. lua_resume is enough and it has the nice
property of not unwinding the stack so it can be examined from the error handler. A new lua
thread is created to execute the uncaught-hook while it has the chance to examine the unchanged
error’ed call stack.

 The hook mechanism isn’t implemented yet.

Internals | 52

Functions that receive a lua callback
There are plenty of functions that have a lua closure as a parameter (e.g. pcall(), scope(), …). If we
blindly implement them in plain C, they will configure a non-leaf C stack frame which we cannot
suspend.

To avoid the C stack frame in the middle of the call-stack altogether, we implement (parts of) these
functions in lua, not C. The problem is then how to expose sensitive raw resources that the C
functions would use. One of the goals is to not let these resources escape elsewhere.

A quick way to achieve it is by having a lua bootstrap function/chunk to create closures and later
change their upvalues through C:

local private_resource = ...
return function()
 -- use `private_resource`
end

This approach is naive as luaJIT 2.x does not implement some lua functions (i.e. the sensitive raw
resources that we want to keep private) as C functions and we cannot feed them as upvalues for the
imported bytecode. For instance, we have this behaviour for pcall():

lua_pushcfunction(L, luaopen_base);
lua_call(L, 0, 0);
lua_getglobal(L, "pcall");
lua_CFunction pcall_addr = lua_tocfunction(L, -1);
assert(pcall_addr == nullptr); // :-(

Therefore the lua bytecode won’t be a closure with uninitialized upvalues per se, but a function
that receives the private resources and returns the needed closure. It is an extra step on startup,
but at least we save some cycles by compiling the bytecode with stripped debug info in the project
build stage.

Process environment
A part of the process environment (e.g. UNIX signals) should be under complete control of the
program and no external library should meddle with it. However, no protections will be provided
to enforce this good practice.

VM settings inheritance
New actors should inherit generic customization points for the GC (e.g. step count and period) and
the JIT. They should also inherit allocator settings, but they must not be prevented from creating
new actors with higher allocation quotas (unless of course the global pool is already at its limit).

Internals | 53

Lua 5.2/LuaJIT extensions
We use some C functions found only on Lua 5.2+ and/or LuaJIT:

• luaL_traceback()

• luaopen_bit()

• luaopen_jit()

• luaopen_ffi()

There are projects such as Kepler that offer a port of these functions to Lua 5.1.

2GB addressing limit
luaJIT has a serious 2GB limit that has been fixed on forks. By default, the broken 64-bit addressing
mode is hidden behind LUAJIT_ENABLE_GC64. Emilua might consider moving to moonjit if its author
don’t try to part away from the lua 5.1 core and keep himself distant from 5.3+ syntactic explosion
madness. I don’t like this C++-like culture expanding to lua or other languages (kudos to Go here for
avoiding it).

JIT parameters
The JIT parameters are also changed from the old defaults:

maxtrace=1000
maxrecord=4000
maxmcode=512 -- in KB

To defaults based on OpenResty findings:

maxtrace=8000
maxrecord=16000
maxmcode=40960 -- in KB

Locales
A recent POSIX standard specified anemic per-thread and per-function locale support, but, aside
from this anemic support, C uses the same locale globally for the whole process.

Meanwhile, C++ has somewhat usable support for multiple locales per process (and an extra global
one that also affects the global C locale).

Functions such as perror() and strerror() will query LC_MESSAGES from the global C locale. However
the sole function to query this attribute — setlocale() — is not thread-safe so we shouldn’t change
the locale after the program starts and minimal initialization to the process state is done. Changing
the global locale is highly unsafe and such API will not be exposed to Lua code.

Internals | 54

https://github.com/keplerproject/lua-compat-5.2
http://hacksoflife.blogspot.com/2012/12/integrating-luajit-with-x-plane-64-bit.html
https://www.freelists.org/post/luajit/Fixed-a-segfault-when-unsinking-64bit-pointers
https://www.freelists.org/post/luajit/LuaJIT-staging-fork-to-move-the-project-forward
http://luajit.org/running.html#opt_O
https://github.com/openresty/luajit2#updated-jit-default-parameters

The thread-safe C++ locales export functionality for LC_MESSAGES through the facet std::messages.
This facet allows one to open system-defined message catalogs, and get translation messages for
them. This facet exposes no equivalent for the query setlocale(LC_MESSAGES, NULL). Even if we
query it at the beginning of the program and try to attach a new custom facet to the global locale
object, this will create a nameless locale. Unnamed global C++ locales will break LC_MESSAGES for the
C ecosystem (e.g. perror() will no longer print localized messages). Therefore custom facets are out
of question.

A direct call to setlocale(LC_MESSAGES, NULL) is avoided too because ISO C++ doesn’t define the
macro LC_MESSAGES. To query the current LC_MESSAGES we just look for LC_MESSAGES in the current C++
locale’s name. This approach doesn’t interfere with the C ecosystem, and also paves the way for
multiple per-process locales.

One can find the list of POSIX environment variables that affect the process' locale at
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_02. The
format for these variables is defined as:

[language[_territory][.codeset][@modifier]]

This format is compatible with RDF’s Turtle where LANGTAG is defined as:

LANGTAG ::= '@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

And it matches the semantics for BCP47 definition:

obs-language-tag = primary-subtag *("-" subtag)
primary-subtag = 1*8ALPHA
subtag = 1*8(ALPHA / DIGIT)

The registry of subtags is maintained by IANA at https://www.iana.org/assignments/language-
subtag-registry/language-subtag-registry.

So LC_MESSAGES=pt_BR becomes Turtle’s "literal"@pt-BR (and at least the subtag is case sensitive).

A Turtle language-tagged string ceases to be of the datatype http://www.w3.org/
2001/XMLSchema#string. Its datatype will be http://www.w3.org/1999/02/22-rdf-
syntax-ns#langString. If this is a problem for your application, do not use Turtle
language-tagged strings.

For more information about C++ locales, the following links are relevant:

• https://stdcxx.apache.org/doc/stdlibug/24-3.html

• https://gcc.gnu.org/onlinedocs/libstdc++/manual/facets.html#
std.localization.facet.messages%23facet.messages.design

• https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html

Internals | 55

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_02
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
https://stdcxx.apache.org/doc/stdlibug/24-3.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/facets.html#std.localization.facet.messages%23facet.messages.design
https://gcc.gnu.org/onlinedocs/libstdc++/manual/facets.html#std.localization.facet.messages%23facet.messages.design
https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html

Open questions
• Describe the behaviour for sys.exit() (for main and secondary VMs). Should it call the

cancellator for every active operation? Should it exit the application?

Extra caution to take when writing plug-ins
Always keep in mind:

• If you enable your IO object to be sent over channels, it’ll also be able to migrate to a different
asio::io_context and you must take care to keep a work guard to the original asio::io_context.

• Pending operations must hold a strong reference to vm_context and a work guard — directly or
indirectly — to vm_context.strand().

• IO objects (channels included) by themselves must not hold any strong references to their own
vm_context (this cycle would prevent auto-closing the VM and associated channels). Operation
initiation is the perfect time to upgrade weak references (if any) to strong ones.

• Pending operations must not trust L from the initiating operation to decide which fiber to wake-
up later on. They must resort — at initiation time — to the vm_context API. Check the simple
sleep_for() implementation for a code template.

Final note
Emilua software is complex. There should be no pursuit in indefinitely extending this base. Rather,
we should search for stabilization and maturity (and also tooling around a solid base).

If you think there should be a nice lua library to handle IRC and what-not, by all means do write it,
but write it as a separate lua library (or native plug-in), and compete against the free market of
libraries. Do not submit a proposal to integrate it in the core. There are no batteries included. And
there shall be no committee-driven development.

Likewise, we should be stuck in the current lua syntax (5.1 plus some extensions found in the beta
branch of luaJIT 2.1[3]) forever. If you want more syntax, use a transpiler.

[1] http://lua-users.org/lists/lua-l/2007-10/msg00600.html

[2] Do notice that contrary to the feeling nourished in the mailing list thread, panic functions also would work in our case. I’ve
tested/verified and I also followed the relevant source code for multiple LuaJIT versions. Really, it’s okay.

[3] http://luajit.org/extensions.html#lua52 (-DLUAJIT_ENABLE_LUA52COMPAT).

Internals | 56

http://lua-users.org/lists/lua-l/2007-10/msg00600.html
http://luajit.org/extensions.html#lua52

Internals (sandboxes)
The purpose of this manual is to help you attack the system. If you’re trying to find security holes,
this section should be a good overview on how the whole system works.

If you find any bug in the code, please responsibly send a bug report so the Emilua team can fix it.

Message serialization
Emilua follows the advice from WireGuard developers to avoid parsing bugs by avoiding object
serialization altogether. Sequenced-packet sockets with builtin framing are used so we always
receive/send whole messages in one API call.

There is a hard-limit (configurable at build time) on the maximum number of members you can
send per message. This limit would need to exist anyway to avoid DoS from bad clients.

Another limitation is that no nesting is allowed. You can either send a single non-nil value or a non-
empty dictionary where every member in it is a leaf from the root tree. The messaging API is part of
the attack surface that bad clients can exploit. We cannot afford a single bug here, so the code must
be simple. By forbidding subtrees we can ignore recursion complexities and simplify the code a lot.

The struct used to receive messages follows:

enum kind
{
 boolean_true = 1,
 boolean_false = 2,
 string = 3,
 file_descriptor = 4,
 actor_address = 5,
 nil = 6
};

struct ipc_actor_message
{
 union
 {
 double as_double;
 uint64_t as_int;
 } members[EMILUA_CONFIG_IPC_ACTOR_MESSAGE_MAX_MEMBERS_NUMBER];
 unsigned char strbuf[
 EMILUA_CONFIG_IPC_ACTOR_MESSAGE_MAX_MEMBERS_NUMBER * 512];
};

A variant class is needed to send the messages. Given a variant is needed anyway, we just adopt
NaN-tagging for its implementation as that will make the struct members packed together and no
memory from the host process hidden among paddings will leak to the containers.

Internals (sandboxes) | 57

The code assumes that no signaling NaNs are ever produced by the Lua VM to simplify the NaN-
tagging scheme[1][2]. The type is stored in the mantissa bits of a signaling NaN.

If the first member is nil, then we have a non-dictionary value stored in members[1]. Otherwise, a
nil will act as a sentinel to the end of the dictionary. No sentinel will exist when the dictionary is
fully filled.

read() calls will write to objects of this type directly (i.e. no intermediate char[N] buffer is used) so
we avoid any complexity with code related to alignment adjustments.

memset(buf, 0, s) is used to clear any unused member of the struct before a call to write() so we
avoid leaking memory from the process to any container.

Strings are preceded by a single byte that contains the size of the string that follows. Therefore,
strings are limited to 255 characters. Following from this scheme, a buffer sufficiently large to hold
the largest message is declared to avoid any buffer overflow. However, we still perform bounds
checking to make sure no uninitialized data from the code stack is propagated back to Lua code to
avoid leaking any memory. The bounds checking function in the code has a simple implementation
that doesn’t make the code much more complex and it’s easy to follow.

To send file descriptors over, SCM_RIGHTS is used. There are a lot of quirks involved with SCM_RIGHTS
(e.g. extra file descriptors could be stuffed into the buffer even if you didn’t expect them). The
encoding scheme for the network buffer is far simpler to use than SCM_RIGHTS' ancillary data.
Complexity-wise, there’s far greater chance to introduce a bug in code related to SCM_RIGHTS than a
bug in the code that parses the network buffer.

Code could be simpler if we only supported messaging strings over, but that would just defer the
problem of secure serialization on the user’s back. Code should be simple, but not simpler. By
throwing all complexity on the user’s back, the implementation would offer no security. At least we
centralized the sensitive object serialization so only one block of code need to be reviewed and
audited.

Spawning a new process
UNIX systems allow the userspace to spawn new processes by a fork() followed by an exec(). exec()
really means an executable will be available in the container, but this assumption doesn’t play nice
with our idea of spawning new actors in an empty container.

What we really want is to to perform a fork followed by no exec() call. This approach in itself also
has its own problems. exec() is the only call that will flush the address space of the running
process. If we don’t exec() then the new process that was supposed to run untrusted code with no
access to system resources will be able to read all previous memory — memory that will most likely
contain sensitive information that we didn’t want leaked. Other problems such as threads
(supported by the Emilua runtime) would also hinder our ability to use fork() without exec()ing.

One simple approach to solve all these problems is to fork() at the beginning of the program so we
fork() before any sensitive information is loaded in the process' memory. Forking at a well known
point also brings other benefits. We know that no thread has been created yet, so resources such as
locks and the global memory allocator stay in a well defined state. By creating this extra process

Internals (sandboxes) | 58

before much more extra virtual memory or file descriptor slots in our process table have been
requested, we also make sure that further processes creation will be cheaper.

└─ emilua program
 └─ emilua runtime (supervisor fork()ed near main())

Every time the main process wants to create an actor in a new process, it’ll defer its job onto the
supervisor that was fork()ed near main(). An AF_UNIX+SOCK_SEQPACKET socket is used to orchestrate
this process. Given the supervisor is only used to create new processes, it can use blocking APIs that
will simplify the code a lot. The blocking read() on the socket also means that it won’t be draining
any CPU resources when it’s not needed. Also important is the threat model here. The main process
is not trying to attack the supervisor process. The supervisor is also trusted and it doesn’t need to
run inside a container. SCM_RIGHTS handling between the main process and the supervisor is
simplified a lot due to these constraints.

However some care is still needed to setup the supervisor. Each actor will initially be an exact copy
of the supervisor process memory and we want to make sure that no sensitive data is leaked there.
The first thing we do right after creating the supervisor is collecting any sensitive information that
might still exist in the main process (e.g. argv and envp) and instructing the supervisor process to
explicit_bzero() them. This compromise is not as good as exec() would offer, but it’s the best we
can do while we limit ourselves to reasonably portable C code with few assumptions about
dynamic/static linkage against system libraries, and other settings from the host environment.

This problem doesn’t end here. Now that we assume the process memory from the supervisor
contains no sensitive data, we want to keep it that way. It may be true that every container is
assumed as a container that some hacker already took over (that’s why we’re isolating them, after
all), but one container shouldn’t leak information to another one. In other words, we don’t even
want to load sensitive information regarding the setup of any container from the supervisor
process as that could leak into future containers. The solution here is to serialize such information
(e.g. the init.script) such that it is only sent directly to the final process. Another AF_UNIX
+SOCK_SEQPACKET socket is used.

Now to the assumptions on the container process. We do assume that it’ll run code that is
potentially dangerous and some hacker might own the container at some point. However the initial
setup does not run arbitrary dangerous code and it still is part of the trusted computing base. The
problem is that we don’t know whether the init.script will need to load sensitive information at
any point to perform its job. That’s why we setup the Lua VM that runs init.script to use a custom
allocator that will explicit_bzero() all allocated memory at the end. Allocations done by external
libraries such as libcap lie outside of our control, but they rarely matter anyway.

That’s mostly the bulk of our problems and how we handle them. Other problems are summarized
in the short list below.

• SIGCHLD would be sent to the main process, but we cannot install arbitrary signal handlers in the
main process as that’s a property from the application (i.e. signal handling disposition is not a
resource owned by the Emilua runtime). The problem was already solved by making the actor a
child of the supervisor process.

• We can’t install arbitrary signal handlers in the container process either as that would break

Internals (sandboxes) | 59

every module by bringing different semantics depending on the context where it runs
(host/container). To handle PID1 automatically we just fork a new process and forward its
signals to the new child.

• "/proc/self/exe" is a resource inherited from the main process (i.e. a resource that exists
outside the container, so the container is not existing in a completely empty world), and could
be exploited in the container. ETXTBSY will hinder the ability from the container to meddle with
"/proc/self/exe", and ETXTBSY is guaranteed by the existence of the supervisor process (even if
the main process exits, the supervisor will stay alive).

The output from tools such as top start to become rather cool when you play with nested
containers:

└─ emilua program
 └─ emilua runtime (supervisor fork()ed near main())
 ├─ emilua runtime (PID1 within the new namespace)
 │ └─ emilua program
 │ └─ emilua runtime (supervisor fork()ed near main())
 └─ emilua runtime (PID1 within the new namespace)
 └─ emilua program
 └─ emilua runtime (supervisor fork()ed near main())

Work lifetime management
For Linux namespaces, PID1 eases our life a lot. As soon as any container starts to act suspiciously
we can safely kill the whole subtree of processes by sending SIGKILL to the PID1 that started it.

For FreeBSD’s Capsicum, PD_DAEMON is not permitted in subprocesses that were placed into capability
mode. If all references to a procdesc file descriptor are closed, the associated process will be
automatically terminated by the kernel.

AF_UNIX+SOCK_SEQPACKET sockets are connection-oriented and simplify our work even further. We
shutdown() the ends of each pair such that they’ll act unidirectionally just like pipes. When all copies
of one end die, the operation on the other end will abort. The actor API translates to MPSC channels,
so we never ever send the reading end to any container (we only make copies of the sending end).
The kernel will take care of any tricky reference counting necessary (and SIGKILLing PID1 will make
sure no unwanted end survives).

The only work left for us to do is pretty much to just orchestrate the internal concurrency
architecture of the runtime (e.g. watch out for blocking reads). Given that we want to abort reads
when all the copies of the sending end are destroyed, we don’t keep any copy to the sending end in
our own process. Everytime we need to send our address over, we create a new pair of sockets to
send the newly created sending end over. inbox will unify the receipt of messages coming from any
of these sockets. You can think of each newly created socket as a new capability. If one capability is
revoked, others remain unaffected.

One good actor could send our address further to a bad actor, and there is no way to revoke access
to the bad actor without also revoking access to the good actor, but that is in line with capability-

Internals (sandboxes) | 60

https://lwn.net/Articles/781013/
https://lwn.net/Articles/781013/
https://lwn.net/Articles/781013/
https://lwn.net/Articles/781013/

based security systems. Access rights are transitive. In fact, a bad actor could write 0-sized messages
over the AF_UNIX+SOCK_SEQPACKET socket to trick us into thinking the channel was already closed.
We’ll happily close the channel and there is no problem here. The system can happily recover later
on (and only this capability is revoked anyway).

Flow control
The runtime doesn’t schedule any read on the socket unless the user calls inbox:receive(). Upon
reading a new message the runtime will either wake the receiving fiber directly, or enqueue the
result in a buffer if no receiving fiber exists at the time (this can happen if the user interrupted the
fiber, or another result arrived and woke the fiber up already). inbox:receive() won’t schedule any
read on the socket if there’s some result already enqueued in the buffer.

setns(fd, CLONE_NEWPID)
We don’t offer any helper to spawn a program (i.e. system.spawn()) within an existing PID
namespace. That’s intentional (although one could still do it through init.script). setns(fd,
CLONE_NEWPID) is dangerous. Only exec() will flush the address space for the process. The window of
time that exists until exec() is called means that any memory from the previous process could be
read by a compromised container (cf. ptrace(2)).

Tests
A mix of approaches is used to test the implementation.

There’s an unit test for every class of good inputs. There are unit tests for accidental bad inputs that
one might try to perform through the Lua API. The unit tests always try to create one scenario for
buffered messages and another for immediate delivery of the result.

When support for plugins is enabled, fuzz tests are built as well. The fuzzers are generation-based.
One fuzzer will generate good input and test if the program will accept all of them. Another fuzzer
will mutate a good input into a bad one (e.g. truncate the message size to attempt a buffer
overflow), and check if the program rejects all of them.

There are some other tests as well (e.g. ensure no padding exists between the members of the C
struct we send over the wire).

[1] http://www.lua.org/source/5.2/lapi.c.html#lua_pushnumber

[2] https://github.com/LuaJIT/LuaJIT/blob/v2.0.5/src/lj_api.c#L569

Internals (sandboxes) | 61

http://www.lua.org/source/5.2/lapi.c.html#lua_pushnumber
https://github.com/LuaJIT/LuaJIT/blob/v2.0.5/src/lj_api.c#L569

Interruption API
Emilua also provides an interruption API that you can use to cancel fibers (you might use it to free
resources from fibers stuck in IO requets that might never complete).

The main question that an interruption API needs to answer is how to keep the application in a
consistent state. A consistent state is a knowledge that is part of the application and the
programmer assumptions, not a knowledge encoded in emilua source code itself. So it is okay to
offload some of the responsibility on the application itself.

One dumb’n’quick example that illustrates the problem of a consistent state follows:

local m = mutex.new()

local f = spawn(function()
 m:lock()
 sleep(2)
 m:unlock()
end)

sleep(1)
f:interrupt()
m:lock()

Before a fiber can be discarded at interruption, it needs to restore state invariants and free
resources. The GC would be hopeless in the previous example (and many more) because the mutex
is shared and still reachable even if we collect the interrupted fiber’s stack. There are other reasons
why we can’t rely on the GC for the job.

Windows approach to thread cancellation would be a contract. This contract requires the
programmer to never call a blocking function directly — always using WaitForMultipleObjects().
And another rule: pass a cancellation handle along the call chain for other functions that need to
perform blocking calls. Conceptually, this solution is just the same as Go’s:

select {
case job <- queue:
 // ... do job ...
case <- ctx.Done():
 // goroutine cancelled
}

The difference being that Go’s Context is part of the standard library and a contract everybody
adopts. The lesson here is that cancellation is part of the runtime, or else it just doesn’t work. In
Emilua, the runtime is extended to provide cancellation API inspired by POSIX’s thread
cancellation.

 I’ve looked many environments, and the only difference I’ve observed between the

Interruption API | 62

terms cancellation and interruption is that interruption is used to convey the
property of cancellation being implemented in terms of exceptions.

When I refer to fiber cancellation within the Emilua runtime, I’ll stick to the term
interruption.

The rest of this document will gloss over many details, but as long as you stay on the common case,
you won’t need to keep most of these details in mind (sensible defaults) and for the details that you
do need to remember, there is a smaller “recap” section at the end.

Do not copy-paste code snippets surrounded by WARNING blocks. They’re most
likely to break your program. Do read the manual to the end. These code snippets
are there as intermediate steps for the general picture.

The lua exception model
It is easy to find a try-catch construct in mainstream languages like so:

try {
 // code that might err
} catch (Exception e) {
 // error handler
}

// other code

And here’s lua translation of this pattern:

local ok = pcall(function()
 -- code that might err
end)
if not ok then
 -- error handler
end
-- other code

The main difference here is that lua’s exception mechanism doesn’t integrate tightly with the type
system (and that’s okay). So the catch-block is always a catch-all really. Also, the structure initially
suggests we don’t need special syntax for a finally block:

try {
 // code that might err
} catch (Exception e) {
 // error handler
} finally {
 // cleanup handler

Interruption API | 63

}

// other code

local ok = pcall(function()
 -- code that might err
end)
if not ok then
 -- error handler
end
-- cleanup handler
-- other code

In sloppy terms, the interruption API just re-schedules the fiber to be resumed but with the fiber
stack slightly modified to throw an exception when execution proceeds. This property will trigger
stack unwinding to call all the error & cleanup handlers in the reverse order that they were
registered.

The interruption protocol
The fiber handle returned by the spawn() function is the heart to communicate intent to interrupt a
fiber. To better accommodate support for structured concurrency and not introduce avoidable co-
dependency between them, we follow the POSIX thread cancellation model (Java’s confusing state
machine is ignored). Long story short, once a fiber has been interrupted, it cannot be un-
interrupted.

To interrupt a fiber, just call the interrupt() function from a fiber handle:

fib:interrupt()

You can only interrupt joinable fibers (but the function is safe to call with any
handle at any time).

Afterwards, you can safely join() or detach() the target fiber:

fib:join()

-- ...or
fib:detach()

If you don’t detach a fiber, the GC will do it for you.

It’s that easy. Your fiber doesn’t need to know the target fiber’s internal state and the target fiber
doesn’t need to know your fiber' internal state. On the other end, to handle an interruption request
is a little trickier.

Interruption API | 64

Handling interruption requests
The key concept required to understand the interruption’s flow is the interruption point.
Understand this, and you’ll have learnt how to handle interruption requests.

Definition
An interruption point configures a point in your application where it is allowed for
the Emilua runtime to stop normal execution flow and raise an exception to
trigger stack unwinding if an interruption request from another fiber has been
received.

When the possibility of interruption is added to the table, your mental model has to take into
account that calls to certain functions now might throw an error for no other reason but rewind the
stack before freeing the fiber.

The only places that are allowed to serve as interruption points are calls to suspending functions
(plus the pcall() family and coroutine.resume() for reasons soon to be explained).

-- this snippet has no interruption points
-- exceptions are never raised here
local i = 0
while true do
 i = i + 1
end

The following function doesn’t need to worry about leaving the object self in an inconsistent state
if the fiber gets interrupted. And the reason for this is quite simple: this function doesn’t have
interruption points (which is usually the case for functions that are purely compute-bound). It
won’t ever be interrupted in the middle of its work.

function mt:new_sample(sample)
 self.mean_ = self.a * sample + (1 - self.a) * self.mean_
 self.f = self.a + (1 - self.a) * self.f
end

Functions that suspend the fiber (e.g. IO and functions from the condition_variable module)
configure interruption points. The function echo defined below has interruption points.

function echo(sock, buf)
 local nread = sock:read(buf) ①
 sock:write(buf, nread) ②
end

Now take the following code to orchestrate the interaction between two fibers.

Interruption API | 65

local child_fib = spawn(function()
 local buf = buffer.new(1024)
 echo(global_sock, buf)
end)

child_fib:interrupt()

The mother-fiber doesn’t have interruption points, so it executes til the end. The child_fib fiber
calls echo() and echo() will in turn act as an interruption point (i.e. the property of being an
interruption point propagates up to the caller functions).

this_fiber.yield() can be used to introduce interruption points for fibers that
otherwise would have none.

The mother-fiber doesn’t call any suspending function, so it’ll run until the end and only yields
execution back to other fibers when it does end. At the last line, an interruption request is sent to
the child fiber. The runtime’s scheduler doesn’t guarantee when the interruption request will be
delivered and can schedule execution of the remaining fibers with plenty of freedom given we’re
not using any synchronization primitives.

In this simple scenario, it’s quite likely that the interruption request will be delivered pretty quickly
and the call to sock:read() inside echo() will suspend child_fib just to awake it again but with an
exception being raised instead of the result being returned. The exception will unwind the whole
stack and the fiber finishes.

Any of the interruption points can serve for the fiber to act on the interruption request. Another
possible point where these mechanisms would be triggered is the sock:write() suspending
function.

The uncaught-hook isn’t called when the exception is fiber_interrupted so you
don’t really have to care about trapping interruption exceptions. You’re free to just
let the stack fully unwind.

local child_fib = spawn(function()
 local buf = buffer.new(1024)
 global_sock_mutex:lock()
 local ok, ex = pcall(function()
 echo(global_sock, buf)
 end)
 global_sock_mutex:unlock()
 if not ok then
 error(ex)
 end
end)

To register a cleanup handler in case the fiber gets interrupted, all you need to do is handle the

Interruption API | 66

raised exceptions.

A fiber is always either interrupted or not interrupted. A fiber doesn’t go back to the un-interrupted
state. Once the fiber has been interrupted, it’ll stay in this state. The task in hand is to rewind the
stack calling the cleanup handlers to keep the application state consistent after the GC collect the
fiber — all done by the Emilua runtime.

So you can’t call more suspending functions after the fiber gets interrupted:

local ok, ex = pcall(function()
 -- lots of IO ops ①
end)
if not ok then
 watchdog_sock:write(errored_msg) ②
 error(ex)
end

① Lots of interruption points. All swallowed by pcall().

② If fiber gets interrupted at #1, it won’t init any IO operation here but instead throw another
fiber_interrupted exception.

The previous snippet has an error. To properly achieve the desired behaviour, you have to
temporally disable interruptions in the cleanup handler like so:

local ok, ex = pcall(function()
 -- lots of IO ops
end)
if not ok then
 this_fiber.disable_interruption()
 pcall(function()
 watchdog_sock:write(errored_msg)
 end)
 this_fiber.restore_interruption()
 error(ex)
end

this_fiber.restore_interruption() has to be called as many times as
this_fiber.disable_interruption() has been called to restore interruptibility.

It looks messy, but this behaviour actually helps the common case to stay clean. Were not for these
choices, a common fiber that doesn’t have to handle interruption like the following would
accidentally swallow an interruption request and never get collected:

local ok = false
while not ok do
 ok = pcall(function()
 my_udp_sock:send(notify_msg)

Interruption API | 67

 end)
end

And the pcall() family in itself also configures an interruption point exactly to make sure that
loops like this won’t prevent the fiber from being properly interrupted. pcall() family and
coroutine.resume() are the only functions which aren’t suspending functions but introduce
interruption points nevertheless.

It is guaranteed that fib:interrupt() will never be an interruption point (and
neither a suspension point).

This guarantee is useful to build certain concurrency patterns.

The scope() facility
The control flow for the common case is good, but handling interruptions right now is tricky to say
the least. To make matters less error-prone, the scope() family of functions exist.

• scope()

• scope_cleanup_push()

• scope_cleanup_pop()

The scope() function receives a closure and executes it, but it maintains a list of cleanup handlers to
be called on the exit path (be it reached by the common exit flow or by a raised exception). When
you call it, the list of cleanup handlers is empty, and you can use scope_cleanup_push() to register
cleanup handlers. They are executed in the reverse order in which they were registered. The
handlers are called with the interruptions disabled, so you don’t need to disable them yourself.

 It is safe to have nested scope()s.

One of the previous examples can now be rewritten as follows:

local child_fib = spawn(function()
 local buf = buffer.new(1024)
 global_sock_mutex:lock()
 scope_cleanup_push(function() global_sock_mutex:unlock() end)
 echo(global_sock, buf)
end)

A hairy situation happens when a cleanup handler itself throws an error. The
reason why the default uncaught-hook doesn’t terminate the VM when secondary
fibers fail is that cleanup handlers are trusted to keep the program invariants.
Once a cleanup handler fails we can no longer hold this assumption.

Once a cleanup handler itself throws an error, the VM is terminated[1] (there’s no
way to recover from this error without context, and conceptually by the time

Interruption API | 68

uncaught hooks are executed, the context was already lost). If you need some sort
of protection against one complex module that will fail now and then, run it in a
separate actor.

In C++ this scenario is analogous to a destructor throwing an exception when the
destructor itself was triggered by an exception-provoked stack unwinding. And the
result is the same, terminate().

If you want to call the last registered cleanup handler and pop it from the list, just call
scope_cleanup_pop(). scope_cleanup_pop() receives an optional argument informing whether the
cleanup handler must be executed after removed from the list (defaulting to true).

scope(function()
 scope_cleanup_push(function()
 watchdog_sock:write(errored_msg)
 end)

 -- lots of IO ops

 scope_cleanup_pop(false)
end)

Every fiber has an implicit root scope so you don’t need to always create one yourself. The standard
lua’s pcall() is also modified to act as a scope which is a lot of convenience for you.

Given pcall() is also an interruption point, examples written enclosed in
WARNING blocks from the previous section had bugs related to maintaining
invariants and the scope() family is the safest way to register cleanup handlers.

IO objects
It’s not unrealistic to share a single IO object among multiple fibers. The following snippets are
based (the original code was not lua’s) on real-world code:

Fiber ping-sender

while true do
 sleep(20)
 write_mutex:lock()
 scope_cleanup_push(function() write_mutex:unlock() end)
 local ok = pcall(function() ws:ping() end)
 if not ok then
 return
 end
 scope_cleanup_pop()
end

Interruption API | 69

https://en.cppreference.com/w/cpp/error/terminate

Fiber consume-subscriptions

while true do
 local ok = pcall(function()
 -- `app` may call `write_mutex:lock()`
 app:consume_subscriptions()
 end)
 if not ok then
 return
 end
 -- uses `condition_variable`
 app:wait_on_subscriptions()
end

Fiber main

local buffer = buffer.new(1024)
while true do
 local ok = pcall(function()
 local nread = ws:read(buffer)
 -- `app` may call `write_mutex:lock()`
 app:on_ws_read(buffer, nread)
 end)
 if not ok then
 break
 end
end

f1:interrupt()
f2:interrupt()
this_fiber.disable_interruption()
f1:join()
f2:join()

A fiber will never be interrupted in the middle (tricky concept to define) of some IO operation. If a
fiber suspended on some IO operation and it was successfully interrupted, it means the operation is
not delivered at all and can be tried again later as if it never happened in the first place. The
following artificial example illustrates this guarantee (restricting the IO object to a single fiber to
keep the code sample small and easy to follow):

scope_cleanup_push(function()
 my_sctp_sock:write(checksum.shutdown_msg)
end)
while true do
 sleep(20)
 my_sctp_sock:write(broadcast_msg)
 checksum:update(broadcast_msg)
end

Interruption API | 70

If the interruption request arrives when the fiber is suspended at my_sctp_sock:write(), the runtime
will schedule cancellation of the underlying IO operation and only resume the fiber when the reply
for the cancellation request arrives. At this point, if the original IO operation already succeeded,
fiber_interrupted exception won’t be raised so you have a chance to examine the result and the
interruption handling will be postponed to the next interruption point.

The pcall() family actually provides the same fundamental guarantee. Once it
starts executing the argument passed, it won’t throw any fiber_interrupted
exception so you have a chance to examine the result of the executed code. The
pcall() family only checks for interruption requests before executing the
argument.

Some IO objects might use relaxed semantics here to avoid expensive
implementations. For instance, HTTP sockets might close the underlying TCP
socket if you cancel an IO operation to avoid bookkeeping state.

Refer to their documentation to check when the behaviour uses relaxed semantics.
All in all, they should never block indefinitely. That’s a guarantee you can rely on.
Preferably, they won’t use a timeout to react on cancellations either (that would be
just bad).

User-level coroutines

Interruptibility is not a property from the coroutine. The coroutine can be created
in one fiber, started in a second fiber and resumed in a third one. Interruptibility
is a property from the fiber.

fibonacci = coroutine.create(function()
 local a, b = 0, 1
 while true do
 a, b = b, a + b
 coroutine.yield(a)
 end
end)

coroutine.resume() swallows exceptions raised within the coroutine, just like pcall(). Therefore, the
runtime guarantees coroutine.resume() enjoys the same properties found in pcall():

• coroutine.resume() is an interruption point.

• coroutine.resume() only checks for interruption requests before resuming the coroutine (i.e. the
interruption notification is not fully asynchronous).

• Like pcall(), coroutine.create() will also create a new scope() for the closure. However, this
scope (and any nested one) is independent from the parent fiber and tied not to the enclosing
parent fiber’s lexical scopes but to the coroutine lifetime.

We can’t guarantee deterministic resumption of zombie coroutines to (re-)deliver interruption

Interruption API | 71

requests (nor should). Therefore, if the GC collects any of your unreachable coroutines with
remaining scope_cleanup_pop() to be done, it does nothing besides collecting the coroutine stack.
You have to prepare your code to cope with this non-guarantee otherwise you most likely will have
buggy code.

local co = coroutine.create(function()
 m:lock()
 -- this handler will never be called
 scope_cleanup_push(function() m:unlock() end)
 coroutine.yield()
end)

coroutine.resume(co)

The safe bet is to just structure the code in a way that there is no need to call scope_cleanup_push()
within user-created coroutines.

Recap
The fiber handle returned by spawn() has an interrupt() member-function that can be used to
interrupt joinable fibers. The fiber only gets interrupted at interruption points. To preserve
invariants your app relies on, register cleanup handlers with scope_cleanup_push().

The relationship between user-created coroutines and interruptions is tricky. Therefore, you should
avoid creating (either manually or through some abstraction) cleanup handlers within them.

this_fiber.disable_interruption()
local numbers = {8, 42, 38, 111, 2, 39, 1}

local sleeper = spawn(function()
 local children = {}
 scope_cleanup_push(function()
 for _, f in pairs(children) do
 f:interrupt()
 end
 end)
 for _, n in pairs(numbers) do
 children[#children + 1] = spawn(function()
 sleep(n)
 print(n)
 end)
 end
 for _, f in pairs(children) do
 f:join()
 end
end)

local sigwaiter = spawn(function()

Interruption API | 72

 local sigusr1 = signals.new(signals.SIGUSR1)
 sigusr1:wait()
 sleeper:interrupt()
end)

sleeper:join()
sigwaiter:interrupt()

[1] I initially drafted a design to recover on limited scenarios (check git history if you’re curious), but then realized it was not only
brittle but also unable to handle leaked fiber handles. Worse, it was very sensitive to leak fiber handles. Therefore I dismissed the
idea altogether.

Interruption API | 73

Lua 5.1
Emilua is based on LuaJIT which means Lua 5.1 + some Lua 5.2 extensions. However some builtin
Lua modules conflict with Emilua modules and thus are not available. This page lists the
divergences.

Enabled modules
• Basic library, which includes the coroutine sub-library.

• String.

• Table.

• Math.

• BitOp.

• JIT.

• FFI.

In other words, the following modules are not enabled:

• IO.

• OS.

• Package (a replacement which may or may not be a drop-in replacement will be available in the
future).

• Debug (it’ll be available in a future release).

Lua 5.1 | 74

Modules
Emilua has its own module system. It may look familiar, and indeed it is the intention. Given the
fact that other libraries on the wild will have incompatible execution models, compatibility with
existing lua libraries is not a concern (although it is most likely to just work for libraries w/o
advanced needs).

The module system is highly inspired by the Rust packaging system. The two languages, however,
are too different and these differences impact the module system as well. To import a module in
dynamic languages such as lua, Python and JavaScript, it is to evaluate/execute source code. Rust
doesn’t have this constraint and Rust gets just fine with a lot of static analysis. The two languages
live in separate worlds. Finally, the module system is also inspired by what Python and NodeJS do.

A module system is meant to isolate pieces of code, symbols and names. One module should not
interfere with each other. And a module can have dependencies on other modules to reuse code.
So, there is the need for private members and exported members. Lua has all features we
need — closures, nested scopes, environments, global scope as a table — to implement a module
system easily.

Quick-start
The things you need to know to get started:

• require() is a free function receiving a string with the module id and returning the module. Two
imports to the same module will only evaluate it once. The result is cached per running VM
instance.

• Every file you write is a module.

• Global names will be exported for modules that import your module.

• Modules can also be directories. In this case, a file named init.lua will be searched and
imported in that directory. init.lua can import any other module inside its directory.

• Cyclic references are unsupported and will raise an error on import.

• You can use the syntax require('../foobar') to import a sibling module named foobar.

• If the module id doesn’t start with './' or '../' then it is assumed to refer to an external
package and different rules apply (see section at the end).

Small example

File src/init.lua:

local server = require('./server')

local hostname = '127.0.0.1'
local port = 3000

local s = server.new(function(sock, req, res)

Modules | 75

 res.headers = {
 ['content-type'] = 'text/plain'
 }
 res.body = 'Hello World\n'
 sock:write_response(res)
end)

s:listen(hostname, port)

File src/server.lua:

local ip = require('ip')
local http = require('http')

local mt = {}
mt.__index = mt

function new(handler)
 return setmetatable({ handler = handler }, mt)
end

function mt:listen(hostname, port)
 local acceptor = ip.tcp.acceptor.new()
 acceptor:open(ip.address.new(hostname))
 acceptor:bind(hostname, port)
 acceptor:listen()
 spawn(function()
 while true do
 local s = http.socket.new(acceptor:accept())
 spawn(function()
 local req = http.request.new()
 local res = http.response.new()

 while true do
 s:read_request(req)
 res.status = 200
 res.reason = 'OK'
 res.headers = nil
 res.body = nil
 res.trailers = nil
 self.handler(s, req, res)
 end
 end)
 end
 end):detach()
end

Modules | 76

Big modules
A typical project structure may look as follows:

src
├── init.lua
├── my_module
│ ├── error.lua
│ ├── init.lua
│ ├── util.lua
│ └── worker.lua
└── util.lua

In this example, there is the project scope whose root begins at src/init.lua — the root module.

In the root module, it is forbidden to use require('../') statements as there is no parent module.
Any name the src/init.lua file require()s will be searched on the src directory. For instance, if
src/init.lua contains require('./util'), emilua will use the src/util.lua file to define the
importing module.

But modules may grow and can be further split into files within a directory by itself. That was the
case for my_module. The init.lua file in that directory will be searched for, and, once found,
evaluated. If src/my_module/init.lua contains more require() calls whose arguments start with
'./', files within that directory (src/my_module) will be searched for.

For instance, if src/my_module/init.lua contains require('./worker'), the file
src/my_module/worker.lua will be searched for. Any file (except for init.lua) within src/my_module
can import other files from the same directory (i.e. their siblings) using the require('../') form
(src/my_module/init.lua siblings live in the directory above, src). For instance,
src/my_module/worker.lua and src/my_module/util.lua may both want to use the same error type
(possibly private) to that module — src/my_module/error.lua. In this case, all they need to contain is
the call require('../error'). And finally due to how they are defined by files (not directories by
themselves), they don’t have children modules and can’t use the usual require('./') call (i.e. the
call argument must start with ../).

Any number of super levels is allowed (e.g. require('../../../../foobar')).

External packages
If the module name to import doesn’t begin with './' nor '../' then it’ll be searched for outside of
the project directory. The places Emilua will look for are:

• Core modules (e.g. 'inbox').

• External packages.

Emilua looks for external packages by examining the following locations (in that order):

1. The EMILUA_PATH environment variable. That’s a colon-separated list[1] of directories.

Modules | 77

2. The installation-dependent default (usually $PREFIX/lib/emilua-$VERSION).

Misc
You might be interested in restricting the filenames of your modules to the set discovered by Boost
developers over the years:

• https://www.boost.org/development/requirements.html#Directory_structure

[1] It’s semicolon-separated on Windows.

Modules | 78

https://www.boost.org/development/requirements.html#Directory_structure

Errors
Emilua is a concurrency runtime for Lua programs. The intra-VM concurrency support is exploited
to offer async I/O. IO errors reported from the operating system are preserved and reported back to
the user. That’s specially important for logging and tracing.

POSIX systems report errors through errno. Meanwhile Windows report errors through
GetLastError(). In both cases, we have an integer holding an error code. So that’s the first piece of
information captured and reported.

The enumeration for errno cannot be extended by libraries or user code, so each new module that
uses the same error reporting style (integer error codes) must defined their own enumeration
(which can safely conflict with error code values from errno). The origin of the integer code defines
the error domain. For instance, POSIX’s getaddrinfo() uses its own set of error codes (EAI_…). The
error domain is the second piece of information captured and reported by Emilua: that’s the error
category.

An error reported by Emilua is a Lua table with two members:

code: integer

The error code (e.g. value from errno).

category: userdata

An object that encodes the error domain (e.g. whether value was read out of errno).

Extra information about the error’s origin might be available depending on the function that
throws the error (e.g. many functions attach the integer "arg" for EINVAL errors).

The error category
Error categories define the metamethods __tostring() and __eq(). The category for errors read
from errno (or GetLastError() on Windows) will return "system" for __tostring(). That’s the
category’s name.

Another important category on Emilua is the "generic" category. This category is meant to
represent POSIX errors (even on Windows). The purpose of this category is to compare errors
portably so you can write cross-platform programs, but you’ll see more on that later.

message(self, code: integer) → string

Returns the explanatory message string for the error specified by code.

For the "system" category on POSIX platforms, that’s the same as strerror(3p).

The error table
The metatable for raised error tables also define the metamethods __tostring() and __eq(). Its
__tostring() is just a shorthand to use the category’s message(). Only code and category are

Errors | 79

compared for __eq() and extra members are ignored.

togeneric(self) → error_code

That’s a function present in __index. It’ll return the default error condition for self.

For instance, filesystem.create_hardlink() will report the original error from the OS so you don’t
lose information on errors. On Windows, this function might throw ERROR_ALREADY_EXISTS, but this
error maps perfectly to POSIX’s EEXIST. If you’re reacting on error codes to determine an action to
take (i.e. you’re actually handling the error instead of throwing it up higher in the stack or
logging/tracing it), then adding the specific error code for each platform serves you no purpose.
That’s the purpose for the function togeneric(). If there’s a mapping between the error code and
POSIX, it’ll return a new error table from the "generic" category. If no such mapping exists, the
original error is returned.

local ok, ec = pcall(...)
if ec:togeneric() == generic_error.EEXIST then
 -- ...
end

RDF error categories
Errors are also user-extensible by defining your own error categories. Emilua has the concept of
modules defined by RDF’s Turtle files[1]. In the future, this will also be used to define
application/packaging resources in Android and Windows binaries, for instance. However, right
now, they’re only used to define error categories.

Easter egg codes from:
<https://www.gnu.org/software/libc/manual/html_node/Error-Codes.html>

@prefix cat: <https://schema.emilua.org/error_category/0/#>.

<about:emilua-module>
 a <https://schema.emilua.org/error_category/0/>;
 cat:error [
 cat:code 1;
 cat:alias "ED";
 # The experienced user will know what is wrong.
 cat:message "?"
], [
 cat:code 2;
 cat:alias "EGREGIOUS";
 # You did what?
 cat:message "You really blew it this time",
 "Você realmente se superou dessa vez"@pt-BR
], [
 cat:code 3;
 cat:alias "EIEIO";

Errors | 80

 # Go home and have a glass of warm, dairy-fresh milk.
 cat:message "Computer bought the farm"
], [
 cat:code 4;
 cat:alias "EGRATUITOUS";
 # This error code has no purpose.
 cat:message "Gratuitous error"
].

[Turtle is] RDF syntax for those with taste

— David Robillard, LV2 co-author

Just throw a .ttl file in the place where you’d put your .lua file and the module system will find it.

local my_error_category = require "/my_error_category"

-- it creates a new error every time,
-- so you don't need to worry about reusing
-- old values
local my_error = my_error_category.EGREGIOUS
my_error.context = "Lorem ipsum"
error(my_error)

You can also refer to errors in a category module by number, but that should be
avoided:

error(my_error_category[2])

You can also define a mapping for generic errors:

@prefix cat: <https://schema.emilua.org/error_category/0/#>.

<about:emilua-module>
 a <https://schema.emilua.org/error_category/0/>;
 cat:error [
 cat:code 1;
 cat:alias "operation_would_block",
 "resource_unavailable_try_again";
 cat:message "Resource temporarily unavailable";
 cat:generic_error "EAGAIN"
].

It might be useful to define generic errors for categories other than "generic"
too[2]. However Emilua doesn’t offer this ability yet as someone needs to put some

Errors | 81

thought on the design.

This is an unusual design in the Lua ecosystem, so you might want some rationale:
https://blog.emilua.org/2021/03/14/lua-errors-from-multiple-vms/.

[1] https://github.com/JoshData/rdfabout

[2] http://breese.github.io/2017/05/12/customizing-error-codes.html

Errors | 82

https://blog.emilua.org/2021/03/14/lua-errors-from-multiple-vms/
https://github.com/JoshData/rdfabout
http://breese.github.io/2017/05/12/customizing-error-codes.html

Sandboxes
Emilua provides support for creating actors in isolated processes using Capsicum, FreeBSD jails,
Seccomp, Linux namespaces or Landlock. The idea is to prevent potentially exploitable code from
accessing resources beyond what has been explicitly handed to them. That’s the basis for
capability-based security systems, and it maps pretty well to APIs implementing the actor model
such as Emilua.

Figure 1. XKCD 1200: Authorization

Even modern operating systems are still somehow rooted in an age where we didn’t know how to
properly partition computer resources adequately to user needs keeping a design focused on
practical and conscious security. Several solutions are stacked together to somehow fill this gap and
they usually work for most of the applications, but that’s not all of them.

Sandboxes | 83

https://xkcd.com/1200/

Consider the web browser. There is an active movement that try to push for a future where only
the web browser exists and users will handle all of their communications, store & share their
photos, book hotels & tickets, check their medical history, manage their banking accounts, and
much more… all without ever leaving the browser. In such scenario, any protection offered by the
OS to protect programs from each other is rendered useless! Only a single program exists. If a
hacker exploits the right vulnerability, all of the user’s data will be stolen. There is no real
compartmentalisation.

The browser is part of a special class of programs. The browser is a shell. A shell is any interface
that acts as a layer between the user and the world. The web browser is the shell for the www
world. Www browser or not, any shell will face similar problems and has to be consciously
designed to safely isolate contexts that distrust each other. The Emilua team is not aware of
anything better than FreeBSD’s Capsicum to do just this. In the absence of Capsicum, we have
Linux Landlock which can be used to build something close. Browsers actually use Linux
namespaces which are older.

The API

Compartmentalised application development is, of necessity, distributed
application development, with software components running in different
processes and communicating via message passing.

— Capsicum: practical capabilities for UNIX, Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris
Kennaway

The Emilua’s API to spawn an actor lies within the reach of a simple function call:

local my_channel = spawn_vm(module)

Check the manual elsewhere to understand the details. As for sandboxes, the idea is to spawn an
actor where no system resources are available (e.g. the filesystem is mostly empty, no network
interfaces are available, no PIDs from other processes can be seen, …).

Consider the hypothetical sandbox class:

local mysandbox1 = sandbox.new()
local my_channel = spawn_vm(mysandbox1:context(module))
mysandbox1:handshake()

That would be the ideal we’re pursuing. Nothing other than 2 extra lines of code at most under your
application. All complexity for creating sandboxes taken care of by specialized teams of security
experts. The Capsicum paper[1] released in 2010 analysed and compared different sandboxing
technologies and showed some interesting figures. Consider the following figure that we reproduce
here:

Table 4. Sandboxing mechanisms employed by Chromium

Sandboxes | 84

Operating system Model Line count Description

Windows ACLs 22350 Windows ACLs and
SIDs

Linux chroot 605 setuid root helper
sandboxes renderer

Mac OS X Seatbelt 560 Path-based MAC
sandbox

Linux SELinux 200 Restricted sandbox type
enforcement domain

Linux seccomp 11301 seccomp and userspace
syscall wrapper

FreeBSD Capsicum 100 Capsicum sandboxing
using cap_enter

Do notice that line count is not the only metric of interest. The original paper accompanies a very
interesting discussion detailing applicability, risks, and levels of security offered by each approach.
Just a few years after the paper was released, user namespaces was merged to Linux and yet a new
option for sandboxing is now available. Fast-forward a few more years and we also have Linux
Landlock which is even better than Linux namespaces. Within this discussion, we can discard most
of the approaches — DAC-based, MAC-based, or too intrusive to be even possible to abstract away as
a reusable component — as inadequate to our endeavour.

Out of them, Capsicum wins hands down. It’s just as capable to isolate parts of an application, but
with much less chance to error (for the Chromium patchset, it was just 100 lines of extra C code
after all). Unfortunately, Capsicum is not available in every modern OS.

Do keep in mind that this is code written by experts in their own fields, and their salary is nothing
less than what Google can afford. 11301 lines of code written by a team of Google engineers for a
lifetime project such as Google Chromium is not an investment that any project can afford. That’s
what the democratization of sandboxing technology needs to do so even small projects can afford
them. That’s why it’s important to use sound models that are easy to analyse such as capability-
based security systems. That’s why it’s important to offer an API that only adds two extra lines of
code to your application. That’s the only way to democratize access to such technology.

Rust programmers' vision of security is to rewrite the world in Rust, a rather
unfeasible undertaking, and a huge waste of resources. In a similar fashion, Deno
was released to exploit v8 as the basis for its sandboxing features (now they expect
the world to be rewritten in TypeScript). The heart of Emilua’s sandboxing relies
on technologies that can isolate any code (e.g. C libraries to parse media streams).

Back to our API, the hypothetical sandbox class that we showed earlier will have to be some library
that abstracts the differences between each sandbox technology in the different platforms. The API
that Emilua actually exposes as of this release abstracts all of the semantics related to actor
messaging, work/lifetime accounting, process reaping, DoS protection, serialization, lots of Linux
namespaces details (e.g. PID1), and much more, but it still expects you to actually initialize the
sandbox.

Sandboxes | 85

The init.script
Every process carries associated credentials that enable operation on system-wide addressable
objects such as filesystem objects and sockets. We setup a sandbox by disabling the ambient
authority so the address space itself becomes inaccessible. Sandboxed code thus should be run only
after such setup already completed successfully. The proper hook to perform this setup is
init.script. init.script runs right after the process is created.

After the sandboxed actor is up it can receive access to new resources through its inbox. If any
security exploit is performed on the sandboxed code, then only the objects it has access to are
rendered vulnerable (the damage is thus contained in its compartment).

Landlock (Linux)

local init_script = [[
 local rules = C.landlock_create_ruleset{ handled_access_fs = {
 "execute", "write_file" "read_file", "read_dir", "remove_dir",
 "remove_file", "make_char", "make_dir", "make_reg", "make_sock",
 "make_fifo", "make_block", "make_sym", "refer", "truncate" } }
 set_no_new_privs()
 C.landlock_restrict_self(rules)
]]

spawn_vm{
 subprocess = {
 init = { script = init_script }
 }
}

Landlock as of now can only control access to filesystem objects, but future versions will be more
complete.

Capsicum

spawn_vm{
 subprocess = {
 init = { script = "C.cap_enter()" }
 }
}

[1] https://www.cl.cam.ac.uk/research/security/capsicum/papers/2010usenix-security-capsicum-website.pdf

Sandboxes | 86

https://www.cl.cam.ac.uk/research/security/capsicum/papers/2010usenix-security-capsicum-website.pdf

Linux namespaces
Here we show a few recipes on how to deal with Linux namespaces from Emilua.

 LWN.net has a good overview on Linux namespaces.

The user namespace
Unless you execute the process as root, Linux will deny the creation of all namespaces except for
the user namespace. The user namespace is the only namespace that an unprivileged process can
create. However it’s fine to pair the user namespace with any combination of the other ones.

When a user namespace is created, it starts out without a mapping of user IDs and group IDs to the
parent user namespace. One can fill the mapping directly as shown in the example that follows:

local init_script = [[
 local uidmap = C.open('/proc/self/uid_map', C.O_WRONLY)
 send_with_fd(arg, '.', uidmap)
 C.write(C.open('/proc/self/setgroups', C.O_WRONLY), 'deny')
 local gidmap = C.open('/proc/self/gid_map', C.O_WRONLY)
 send_with_fd(arg, '.', gidmap)

 -- sync point
 C.read(arg, 1)
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

spawn_vm{
 subprocess = {
 newns_user = true,
 init = { script = init_script, arg = sguest }
 }
}
sguest:close()
local ignored_buf = byte_span.new(1)

local uidmap = ({system.getresuid()})[2]
uidmap = byte_span.append('0 ', tostring(uidmap), ' 1\n')
local uidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(uidmapfd):write_some(uidmap)

local gidmap = ({system.getresgid()})[2]
gidmap = byte_span.append('0 ', tostring(gidmap), ' 1\n')
local gidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(gidmapfd):write_some(gidmap)

Linux namespaces | 87

https://lwn.net/Articles/531114/#series_index

-- sync point #1
shost:send(ignored_buf)

shost:close()

An AF_UNIX+SOCK_SEQPACKET socket is used to coordinate the parent and the child processes. This type
of socket allows duplex communication between two parties with builtin framing for messages,
disconnection detection (process reference counting if you will), and it also allows sending file
descriptors back-and-forth.

We also close sguest from the host side as soon as we’re done with it. This will ensure any operation
on shost will fail if the child process aborts for any reason (i.e. no deadlocks happen here).

Even if it’s a sandbox, and root inside the sandbox doesn’t mean root outside it,
maybe you still want to drop all root privileges at the end of the
subprocess.init.script:

C.cap_set_proc('=')

It won’t be particularly useful for most people, but that technique is still useful
to — for instance — create alternative LXC/FlatPak front-ends to run a few
programs (if the program can’t update its own binary files, new possibilities for
sandboxing practice open up).

Alternatively, one can fill the mapping indirectly. Below we show how to do it using the suid-helper
newuidmap:

local init_script = [[
 local pidfd = C.open('/proc/self', C.O_RDONLY)
 send_with_fd(arg, '.', pidfd)

 -- sync point
 C.read(arg, 1)
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

spawn_vm{
 subprocess = {
 newns_user = true,
 init = { script = init_script, arg = sguest }
 }
}
sguest:close()
local ignored_buf = byte_span.new(1)
local pidfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]

Linux namespaces | 88

system.spawn{
 program = 'newuidmap',
 stdout = 'share',
 stderr = 'share',
 arguments = {
 'newuidmap',
 'fd:3', '0', '100000', '1001'
 },
 extra_fds = {
 [3] = pidfd
 }
}:wait()

system.spawn{
 program = 'newgidmap',
 stdout = 'share',
 stderr = 'share',
 arguments = {
 'newgidmap',
 'fd:3', '0', '100000', '1001'
 },
 extra_fds = {
 [3] = pidfd
 }
}:wait()

-- sync point #1
shost:send(ignored_buf)

shost:close()

 You need to configure /etc/subuid to have newuidmap working.

The network namespace
Let’s start by isolating the network resources as that’s the easiest one:

spawn_vm{ subprocess = {
 newns_user = true,
 newns_net = true
} }

The process will be created within a new network namespace where no interfaces besides the
loopback device exist. And even the loopback device will be down! If you want to configure the
loopback device so the process can at least bind sockets to it you can use the program ip. However
the program ip needs to run within the new namespace. To spawn the program ip within the
namespace of the new actor you need to acquire the file descriptors to its namespaces. There are
two ways to do that. You can either use race-prone PID primitives (easy), or you can use a

Linux namespaces | 89

handshake protocol to ensure that there are no races related to PID dances. Below we show the
race-free method.

local init_script = [[
 local userns = C.open('/proc/self/ns/user', C.O_RDONLY)
 send_with_fd(arg, '.', userns)
 local netns = C.open('/proc/self/ns/net', C.O_RDONLY)
 send_with_fd(arg, '.', netns)

 -- sync point
 C.read(arg, 1)
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

spawn_vm{
 subprocess = {
 newns_user = true,
 newns_net = true,
 init = { script = init_script, arg = sguest }
 }
}
sguest:close()
local ignored_buf = byte_span.new(1)
local userns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
local netns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
system.spawn{
 program = 'ip',
 arguments = {'ip', 'link', 'set', 'dev', 'lo', 'up'},
 nsenter_user = userns,
 nsenter_net = netns
}:wait()
shost:close()

The PID namespace
When a new PID namespace is created, the process inside the new namespace ceases to see
processes from the parent namespace. Your process still can see new processes created in the
child’s namespace, so invisibility only happens in one direction. PID namespaces are hierarchically
nested in parent-child relationships.

The first process in a PID namespace is PID1 within that namespace. PID1 has a few special
responsibilities. After subprocess.init.script exits, the Emilua runtime will fork if it’s running as
PID1. This new child will assume the role of starting your module (the Lua VM).

The controlling terminal

If you want to set up a pty in init.script, the PID1 will be the session leader. That

Linux namespaces | 90

way, the actor running in PID2 wouldn’t accidentally acquire a new ctty if it
happens to open() a tty that isn’t currently controlling any session.

If the PID1 dies, all processes from that namespace (including further descendant PID namespaces)
will be killed. This behavior allows you to fully dispose of a container when no longer needed by
sending SIGKILL to PID1. No process will escape.

Communication topology may be arbitrarily defined as per the actor model, but the processes
always assume a topology of a tree (supervision trees), and no PID namespace ever “re-parents”.

The Emilua runtime automatically sends SIGKILL to every process spawned using the Linux
namespaces API when the actor that spawned them exits. If you want fine control over these
processes, you can use a few extra methods that are available to the channel object that represents
them.

The mount namespace
Let’s build up on our previous knowledge and build a sandbox with an empty "/" (that’s right!).

local init_script = [[
 ...

 -- unshare propagation events
 C.mount(nil, '/', nil, C.MS_PRIVATE)

 C.umask(0)
 C.mount(nil, '/mnt', 'tmpfs', 0)
 C.mkdir('/mnt/proc', mode(7, 5, 5))
 C.mount(nil, '/mnt/proc', 'proc', 0)
 C.mkdir('/mnt/tmp', mode(7, 7, 7))

 -- pivot root
 C.mkdir('/mnt/mnt', mode(7, 5, 5))
 C.chdir('/mnt')
 C.pivot_root('.', '/mnt/mnt')
 C.chroot('.')
 C.umount2('/mnt', C.MNT_DETACH)

 -- sync point
 C.read(arg, 1)
]]

spawn_vm{
 subprocess = {
 ...,
 newns_mount = true,

 -- let's go ahead and create a new
 -- PID namespace as well

Linux namespaces | 91

 newns_pid = true
 }
}

We could certainly create a better initial "/". We could certainly do away with a few of the lines by
cleverly reordering them. However the example is still nice to just illustrate a few of the syscalls
exposed to the Lua script. There’s nothing particularly hard about mount namespaces. We just call
a few syscalls, and no fd-dance between host and guest is really necessary.

One technique that we should mention is how module in spawn_vm(module) is interpreted when you
use Linux namespaces. This argument no longer means an actual module when namespaces are
involved. It’ll just be passed along to the new process. The following snippet shows you how to
actually get the new actor in the container by finding a proper module to start.

local guest_code = [[
 local inbox = require 'inbox'
 local ip = require 'ip'

 local ch = inbox:receive().dest
 ch:send(ip.host_name())
]]

local init_script = [[
 ...

 local modulefd = C.open(
 '/app.lua',
 bit.bor(C.O_WRONLY, C.O_CREAT),
 mode(6, 0, 0))
 send_with_fd(arg, '.', modulefd)
]]

local my_channel = spawn_vm{ module = '/app.lua', ... }

...

local module = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
module = file.stream.new(module)
stream.write_all(module, guest_code)
shost:close()

my_channel:send{ dest = inbox }
print(inbox:receive())

Full example

local stream = require 'stream'

Linux namespaces | 92

local system = require 'system'
local inbox = require 'inbox'
local file = require 'file'
local unix = require 'unix'

local guest_code = [[
 local inbox = require 'inbox'
 local ip = require 'ip'

 local ch = inbox:receive().dest
 ch:send(ip.host_name())
]]

local init_script = [[
 local uidmap = C.open('/proc/self/uid_map', C.O_WRONLY)
 send_with_fd(arg, '.', uidmap)
 C.write(C.open('/proc/self/setgroups', C.O_WRONLY), 'deny')
 local gidmap = C.open('/proc/self/gid_map', C.O_WRONLY)
 send_with_fd(arg, '.', gidmap)

 -- sync point #1 as tmpfs will fail on mkdir()
 -- with EOVERFLOW if no UID/GID mapping exists
 -- https://bugzilla.kernel.org/show_bug.cgi?id=183461
 C.read(arg, 1)

 local userns = C.open('/proc/self/ns/user', C.O_RDONLY)
 send_with_fd(arg, '.', userns)
 local netns = C.open('/proc/self/ns/net', C.O_RDONLY)
 send_with_fd(arg, '.', netns)

 -- unshare propagation events
 C.mount(nil, '/', nil, C.MS_PRIVATE)

 C.umask(0)
 C.mount(nil, '/mnt', 'tmpfs', 0)
 C.mkdir('/mnt/proc', mode(7, 5, 5))
 C.mount(nil, '/mnt/proc', 'proc', 0)
 C.mkdir('/mnt/tmp', mode(7, 7, 7))

 -- pivot root
 C.mkdir('/mnt/mnt', mode(7, 5, 5))
 C.chdir('/mnt')
 C.pivot_root('.', '/mnt/mnt')
 C.chroot('.')
 C.umount2('/mnt', C.MNT_DETACH)

 local modulefd = C.open(
 '/app.lua',
 bit.bor(C.O_WRONLY, C.O_CREAT),
 mode(6, 0, 0))
 send_with_fd(arg, '.', modulefd)

Linux namespaces | 93

 -- sync point #2 as we must await for
 --
 -- * loopback net device
 -- * `/app.lua`
 --
 -- before we run the guest
 C.read(arg, 1)

 C.sethostname('mycoolhostname')
 C.setdomainname('mycooldomainname')

 -- drop all root privileges
 C.cap_set_proc('=')
]]

local shost, sguest = unix.seqpacket.socket.pair()
sguest = sguest:release()

local my_channel = spawn_vm{
 module = '/app.lua',
 subprocess = {
 newns_user = true,
 newns_net = true,
 newns_mount = true,
 newns_pid = true,
 newns_uts = true,
 newns_ipc = true,
 init = { script = init_script, arg = sguest }
 }
}
sguest:close()

local ignored_buf = byte_span.new(1)

local uidmap = ({system.getresuid()})[2]
uidmap = byte_span.append('0 ', tostring(uidmap), ' 1\n')
local uidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(uidmapfd):write_some(uidmap)

local gidmap = ({system.getresgid()})[2]
gidmap = byte_span.append('0 ', tostring(gidmap), ' 1\n')
local gidmapfd = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
file.stream.new(gidmapfd):write_some(gidmap)

-- sync point #1
shost:send(ignored_buf)

local userns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
local netns = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
system.spawn{

Linux namespaces | 94

 program = 'ip',
 arguments = {'ip', 'link', 'set', 'dev', 'lo', 'up'},
 nsenter_user = userns,
 nsenter_net = netns
}:wait()

local module = ({shost:receive_with_fds(ignored_buf, 1)})[2][1]
module = file.stream.new(module)
stream.write_all(module, guest_code)

-- sync point #2
shost:close()

my_channel:send{ dest = inbox }
print(inbox:receive())

Linux namespaces | 95

C++ embedder API
If you want to embed Emilua in your own Boost.Asio-based programs, this is the list of steps you
need to do:

1. Compile and link against Emilua (use Meson or pkg-config to have the appropriate compiler
flags filled automatically).

2. #include <emilua/state.hpp>

3. Instantiate emilua::app_context. This object needs to stay alive for as long as at least one Lua VM
is alive. If you want to be sure, just make sure it outlives boost::asio::io_context and you’re
good to go.

4. Create an emilua::properties_service object with the same concurrency hint passed to
boost::asio::io_context and add it to the boost::asio::io_context object using
boost::asio::make_service. This step will be needed for as long as Boost.Asio refuses to add a
getter for the concurrency hint: https://github.com/chriskohlhoff/asio/pull/1254.

5. Call emilua::make_vm() (see src/main.ypp for an example).

6. Call emilua::vm_context::fiber_resume() inside the strand returned by
emilua::vm_context::strand() to start the Lua VM created in the previous step (see src/main.ypp
for an example).

7. Optionally synchronize against other threads before you exit the application. If you’re going to
spawn actors in foreign boost::asio::io_context objects in your Lua programs then it’s a good
idea to include this step. See below.

Emilua is not designed to work properly with boost::asio::io_context::stop().
Many cleanup steps will be missed if you call this function. If you need to use it,
then spawn Emilua programs in their own boost::asio::io_context instances.

emilua::app_context
This type stores process-wide info that is shared among all Lua VMs (e.g. process arguments,
environment, module paths, module caches, default logger, which VM is the master VM, …).

If you want to embed the Lua programs in your binary as well you can pre-populate the module
cache here with the contents of all Lua files you intend to ship in the binary. modules_cache_registry
is the member you’re looking for. Do this before you start the first Lua VM. However there’s a
better way (see next section).

Builtin modules
Just use linker args to override some or all of the following 3 functions:

• emilua_get_builtin_module

• emilua_get_builtin_rdf_ec

• emilua_get_builtin_native_module

C++ embedder API | 96

https://github.com/chriskohlhoff/asio/pull/1254

Using this method instead of pre-filling the module cache allows actors spawned in subprocesses to
import these modules as well. This method may also lead to better start-up times and a smaller
memory footprint (you could even use gperf to have the best module search performance).

Master VM
If you want to allow your Lua programs to change process state that is shared among all program
threads (e.g. current working directory, signal handlers, …) then you need to elect one Lua VM to be
the master VM.

The 1-one snippet that follows is enough to finish this setup. This step must be done before you call
fiber_resume().

appctx.master_vm = vm_ctx;

Cleanup at exit
First make sure emilua::app_context outlives boost::asio::io_context.

After boost::asio::io_context::run() returns you can use the following snippet to synchronize
against extra threads and boost::asio::io_context objects your Lua scripts created[1].

{
 std::unique_lock<std::mutex> lk{appctx.extra_threads_count_mtx};
 while (appctx.extra_threads_count > 0)
 appctx.extra_threads_count_empty_cond.wait(lk);
}

Actors spawned in different processes
Emilua has the ability to spawn Lua VMs in their own processes for isolation or sandboxing
purposes. To enable this feature, a supervisor process must be created while the program is still
single-threaded.

For communication with the supervisor process, Emilua uses an UNIX socket. The file descriptor for
this process is stored in app_context::ipc_actor_service_sockfd. See src/main.ypp for an example on
how to initialize this variable.

You also need to initialize emilua::app_context::environp. This is a pointer to environ. This step must
be done before you fork to create the supervisor process. Emilua uses an indirection instead of
using environ directly because FreeBSD is not POSIX-compliant and the usual declaration for
environ doesn’t work from shared libraries. Emilua never modifies the environment for the main
process, so you don’t need to worry about what Emilua uses this variable for. Its usage is internal to
Emilua and won’t affect your C++ program.

C++ embedder API | 97

#if BOOST_OS_UNIX
emilua::app_context::environp = &environ;
#endif // BOOST_OS_UNIX

On Linux, you also need to initialize emilua::clone_stack_address.

If you don’t intend to have Lua VMs tied to their own processes triggered by Lua programs then you
can skip this step.

RT signals
Emilua reserves a RT signal for internal uses (cancelling IO operations which have poor system
APIs). This signal can be configured at build time:

meson configure -Deintr_rtsigno=RTSIGNO

If you choose the value 0, this support is disabled altogether and Emilua won’t reserve any RT signal
by itself. If this support is enabled, you must add some code similar to the following one in main():

struct sigaction sa;
std::memset(&sa, 0, sizeof(struct sigaction));

sigemptyset(&sa.sa_mask);
sigaddset(&sa.sa_mask, EMILUA_CONFIG_EINTR_RTSIGNO);
sigprocmask(SIG_BLOCK, &sa.sa_mask, /*oldset=*/NULL);

sa.sa_sigaction = emilua::longjmp_on_rtsigno;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigaction(EMILUA_CONFIG_EINTR_RTSIGNO, /*act=*/&sa, /*oldact=*/NULL);

[1] Emilua only instantiates new threads and boost::asio::io_context objects if your Lua programs explicitly ask for that when it
calls spawn_vm(). You can also disable this feature altogether at build time.

C++ embedder API | 98

Reference

| 99

generic_error

local generic_error = require 'generic_error'

local my_error = generic_error.EINVAL
my_error.arg = 1
error(my_error)

An userdata for which the __index() metamethod returns a new error code from the generic
category on access.

Error list
• EAFNOSUPPORT

• EADDRINUSE

• EADDRNOTAVAIL

• EISCONN

• E2BIG

• EDOM

• EFAULT

• EBADF

• EBADMSG

• EPIPE

• ECONNABORTED

• EALREADY

• ECONNREFUSED

• ECONNRESET

• EXDEV

• EDESTADDRREQ

• EBUSY

• ENOTEMPTY

• ENOEXEC

• EEXIST

• EFBIG

• ENAMETOOLONG

• ENOSYS

• EHOSTUNREACH

generic_error | 100

• EIDRM

• EILSEQ

• ENOTTY

• EINTR

• EINVAL

• ESPIPE

• EIO

• EISDIR

• EMSGSIZE

• ENETDOWN

• ENETRESET

• ENETUNREACH

• ENOBUFS

• ECHILD

• ENOLINK

• ENOLCK

• ENOMSG

• ENOPROTOOPT

• ENOSPC

• ENXIO

• ENODEV

• ENOENT

• ESRCH

• ENOTDIR

• ENOTSOCK

• ENOTCONN

• ENOMEM

• ENOTSUP

• ECANCELED

• EINPROGRESS

• EPERM

• EOPNOTSUPP

• EWOULDBLOCK

• EOWNERDEAD

• EACCES

generic_error | 101

• EPROTO

• EPROTONOSUPPORT

• EROFS

• EDEADLK

• EAGAIN

• ERANGE

• ENOTRECOVERABLE

• ETXTBSY

• ETIMEDOUT

• ENFILE

• EMFILE

• EMLINK

• ELOOP

• EOVERFLOW

• EPROTOTYPE

generic_error | 102

asio_error

local asio_error = require 'asio_error'

error(asio_error.misc.eof)

An userdata for which the __index() metamethod returns a new error code from the asio category
on access.

Error list

Basic errors

These errors may be just an alias to common errors from the system category depending on the
host operating system.

• basic.access_denied

• basic.address_family_not_supported

• basic.address_in_use

• basic.already_connected

• basic.already_started

• basic.broken_pipe

• basic.connection_aborted

• basic.connection_refused

• basic.connection_reset

• basic.bad_descriptor

• basic.fault

• basic.host_unreachable

• basic.in_progress

• basic.interrupted

• basic.invalid_argument

• basic.message_size

• basic.name_too_long

• basic.network_down

• basic.network_reset

• basic.network_unreachable

• basic.no_descriptors

• basic.no_buffer_space

asio_error | 103

• basic.no_memory

• basic.no_permission

• basic.no_protocol_option

• basic.no_such_device

• basic.not_connected

• basic.not_socket

• basic.operation_aborted

• basic.operation_not_supported

• basic.shut_down

• basic.timed_out

• basic.try_again

• basic.would_block

netdb.h errors

• netdb.host_not_found

• netdb.host_not_found_try_again

• netdb.no_data

• netdb.no_recovery

addrinfo errors

• addrinfo.service_not_found

• addrinfo.socket_type_not_supported

Misc errors

• misc.already_open

• misc.eof

• misc.not_found

• misc.fd_set_failure

asio_error | 104

format

Synopsis

format(fmt: string[, ...]) -> string

Description
Formats args according to specifications in fmt and returns the result as a string.

Supported arguments:

• boolean

• number

• string

You may also specify pairs. First element must be a string and it works as a named argument.

The full specification for the format string can be found in libfmt homepage.

 format() is a global so it doesn’t need to be require()d.

Example

format("{0}, {1}, {2}", 'a', 'b', 'c')
-- Result: "a, b, c"

format("{}, {}, {}", 'a', 'b', 'c')
-- Result: "a, b, c"

format("{2}, {1}, {0}", 'a', 'b', 'c')
-- Result: "c, b, a"

format("{0}{1}{0}", "abra", "cad") -- arguments' indices can be repeated
-- Result: "abracadabra"

format("{:.{}f}", 3.14, 1)
-- Result: "3.1"

format("Elapsed time: {s:.2f} seconds", {"s", 1.23})
-- Result: "Elapsed time: 1.23 seconds"

format | 105

https://fmt.dev/latest/syntax.html

byte_span

local byte_span = require 'byte_span'

A span of bytes. In Emilua, they’re used as network buffers.

Plugin authors

This class is intended for network buffers in a proactor-based network API (i.e.
true asynchronous IO). A NIC could be writing to this memory region while the
program is running. This has the same effect of another thread writing to the same
memory region.

If you’re writing state machines, do not construct the state machine on top of the
memory region pointed by a byte_span. It’s not safe to store state here as buggy Lua
applications could mutate this area in a racy way. Only use the memory region as
the result of operations.

A future Emilua release could introduce read-write locks, but as of now I’m
unconvinced of their advantages here.

It’s modeled after Golang’s slices. However 1-indexed access is used.

Functions

new(length: integer[, capacity: integer]) → byte_span

Constructor.

When the capacity argument is omitted, it defaults to the specified length.

slice(self[, start: integer, end: integer]) → byte_span

Returns a new byte_span that points to a slice of the same memory region.

The start and end indices are optional; they default to 1 and the byte_span's length respectively.

We can grow a byte_span to its capacity by slicing it again.

Invalid ranges (e.g. start below 1, a byte_span running beyond its capacity, negative indexes, …) will
raise EINVAL.

copy(self, src: byte_span|string) → integer

Copy src into self.

Returns the number of elements copied.

Copying between slices of different lengths is supported (it’ll copy only up to the smaller number of

byte_span | 106

http://blog.golang.org/2011/01/go-slices-usage-and-internals.html

elements). In addition it can handle source and destination spans that share the same underlying
memory, handling overlapping spans correctly.

append() → byte_span

function append(self, ...: byte_span|string|nil) -> byte_span ①
function append(...: byte_span|string|nil) -> byte_span ②

Returns a new byte_span by appending trailing arguments into self. If self's capacity is enough to
hold all data, the underlying memory is modified in place. Otherwise the returned byte_span will
point to newly allocated memory[1].

For the second overload (non-member function), a new byte span is created from scratch.

Functions (string algorithms)
These functions operate in terms of octets/bytes (kinda like an 8-bit ASCII) and have no concept of
UTF-8 encoding.

starts_with(self, prefix: string|byte_span) → boolean

Returns whether self begins with prefix.

ends_with(self, suffix: string|byte_span) → boolean

Returns whether self ends with suffix.

find(self, tgt: string|byte_span[, start: integer]) → integer|nil

Finds the first substring equals to tgt and returns its index, or nil if not found.

rfind(self, tgt: string|byte_span[, end_: integer]) → integer|nil

Finds the last substring equals to tgt and returns its index, or nil if not found.

find_first_of(self, strlist: string|byte_span[, start: integer]) →
integer|nil

Finds the first octet equals to any of the octets within strlist and returns its index, or nil if not
found.

find_last_of(self, strlist: string|byte_span[, end_: integer]) → integer|nil

Finds the last octet equals to any of the octets within strlist and returns its index, or nil if not
found.

find_first_not_of(self, strlist: string|byte_span[, start: integer]) →
integer|nil

Finds the first octet not equals to any of the octets within strlist and returns its index, or nil if not

byte_span | 107

found.

find_last_not_of(self, strlist: string|byte_span[, end: integer]) →
integer|nil

Finds the last octet not equals to any of the octets within strlist and returns its index, or nil if not
found.

trimmed(self[, lws: string|byte_span = " \f\n\r\t\v"]) → byte_span

Returns a slice from self that doesn’t start nor ends with any octet from lws.

Functions (primitive types serialization)
These functions operate in terms of bytes, and are endianness-aware. They throw EINVAL if you use
a byte_span of the wrong size. Data doesn’t need to be aligned.

get_u16be(self) → integer

Interpret self (must be 2 bytes long) as an unsigned 16-bit integer (big endian order) and return the
result.

get_u16le(self) → integer

Interpret self (must be 2 bytes long) as an unsigned 16-bit integer (little endian order) and return
the result.

get_u24be(self) → integer

Interpret self (must be 3 bytes long) as an unsigned 24-bit integer (big endian order) and return the
result.

get_u24le(self) → integer

Interpret self (must be 3 bytes long) as an unsigned 24-bit integer (little endian order) and return
the result.

get_u32be(self) → integer

Interpret self (must be 4 bytes long) as an unsigned 32-bit integer (big endian order) and return the
result.

get_u32le(self) → integer

Interpret self (must be 4 bytes long) as an unsigned 32-bit integer (little endian order) and return
the result.

get_u40be(self) → integer

Interpret self (must be 5 bytes long) as an unsigned 40-bit integer (big endian order) and return the
result.

byte_span | 108

get_u40le(self) → integer

Interpret self (must be 5 bytes long) as an unsigned 40-bit integer (little endian order) and return
the result.

get_u48be(self) → integer

Interpret self (must be 6 bytes long) as an unsigned 48-bit integer (big endian order) and return the
result.

get_u48le(self) → integer

Interpret self (must be 6 bytes long) as an unsigned 48-bit integer (little endian order) and return
the result.

get_i8(self) → integer

Interpret self (must be 1 byte long) as a signed 8-bit integer and return the result.

 get_u8() doesn’t exist as you can just index instead.

get_i16be(self) → integer

Interpret self (must be 2 bytes long) as an signed 16-bit integer (big endian order) and return the
result.

get_i16le(self) → integer

Interpret self (must be 2 bytes long) as an signed 16-bit integer (little endian order) and return the
result.

get_i24be(self) → integer

Interpret self (must be 3 bytes long) as an signed 24-bit integer (big endian order) and return the
result.

get_i24le(self) → integer

Interpret self (must be 3 bytes long) as an signed 24-bit integer (little endian order) and return the
result.

get_i32be(self) → integer

Interpret self (must be 4 bytes long) as an signed 32-bit integer (big endian order) and return the
result.

get_i32le(self) → integer

Interpret self (must be 4 bytes long) as an signed 32-bit integer (little endian order) and return the
result.

byte_span | 109

get_i40be(self) → integer

Interpret self (must be 5 bytes long) as an signed 40-bit integer (big endian order) and return the
result.

get_i40le(self) → integer

Interpret self (must be 5 bytes long) as an signed 40-bit integer (little endian order) and return the
result.

get_i48be(self) → integer

Interpret self (must be 6 bytes long) as an signed 48-bit integer (big endian order) and return the
result.

get_i48le(self) → integer

Interpret self (must be 6 bytes long) as an signed 48-bit integer (little endian order) and return the
result.

get_f32be(self) → number

Interpret self (must be 4 bytes long) as a 32-bit floating point number (big endian order) and return
the result.

get_f32le(self) → number

Interpret self (must be 4 bytes long) as a 32-bit floating point number (little endian order) and
return the result.

get_f64be(self) → number

Interpret self (must be 8 bytes long) as a 64-bit floating point number (big endian order) and return
the result.

get_f64le(self) → number

Interpret self (must be 8 bytes long) as a 64-bit floating point number (little endian order) and
return the result.

set_u16be(self, n: integer)

Set the stored byte sequence (must be 2 bytes long) to represent the unsigned 16-bit integer (big
endian order) n.

set_u16le(self, n: integer)

Set the stored byte sequence (must be 2 bytes long) to represent the unsigned 16-bit integer (little
endian order) n.

byte_span | 110

set_u24be(self, n: integer)

Set the stored byte sequence (must be 3 bytes long) to represent the unsigned 24-bit integer (big
endian order) n.

set_u24le(self, n: integer)

Set the stored byte sequence (must be 3 bytes long) to represent the unsigned 24-bit integer (little
endian order) n.

set_u32be(self, n: integer)

Set the stored byte sequence (must be 4 bytes long) to represent the unsigned 32-bit integer (big
endian order) n.

set_u32le(self, n: integer)

Set the stored byte sequence (must be 4 bytes long) to represent the unsigned 32-bit integer (little
endian order) n.

set_u40be(self, n: integer)

Set the stored byte sequence (must be 5 bytes long) to represent the unsigned 40-bit integer (big
endian order) n.

set_u40le(self, n: integer)

Set the stored byte sequence (must be 5 bytes long) to represent the unsigned 40-bit integer (little
endian order) n.

set_u48be(self, n: integer)

Set the stored byte sequence (must be 6 bytes long) to represent the unsigned 48-bit integer (big
endian order) n.

set_u48le(self, n: integer)

Set the stored byte sequence (must be 6 bytes long) to represent the unsigned 48-bit integer (little
endian order) n.

set_i8(self, n: integer)

Set the stored byte sequence (must be 1 bytes long) to represent the signed byte n.

 set_u8() doesn’t exist as you can just index instead.

set_i16be(self, n: integer)

Set the stored byte sequence (must be 2 bytes long) to represent the signed 16-bit integer (big
endian order) n.

byte_span | 111

set_i16le(self, n: integer)

Set the stored byte sequence (must be 2 bytes long) to represent the signed 16-bit integer (little
endian order) n.

set_i24be(self, n: integer)

Set the stored byte sequence (must be 3 bytes long) to represent the signed 24-bit integer (big
endian order) n.

set_i24le(self, n: integer)

Set the stored byte sequence (must be 3 bytes long) to represent the signed 24-bit integer (little
endian order) n.

set_i32be(self, n: integer)

Set the stored byte sequence (must be 4 bytes long) to represent the signed 32-bit integer (big
endian order) n.

set_i32le(self, n: integer)

Set the stored byte sequence (must be 4 bytes long) to represent the signed 32-bit integer (little
endian order) n.

set_i40be(self, n: integer)

Set the stored byte sequence (must be 5 bytes long) to represent the signed 40-bit integer (big
endian order) n.

set_i40le(self, n: integer)

Set the stored byte sequence (must be 5 bytes long) to represent the signed 40-bit integer (little
endian order) n.

set_i48be(self, n: integer)

Set the stored byte sequence (must be 6 bytes long) to represent the signed 48-bit integer (big
endian order) n.

set_i48le(self, n: integer)

Set the stored byte sequence (must be 6 bytes long) to represent the signed 48-bit integer (little
endian order) n.

set_f32be(self, n: number)

Set the stored byte sequence (must be 4 bytes long) to represent the 32-bit floating point number
(big endian order) n.

byte_span | 112

set_f32le(self, n: number)

Set the stored byte sequence (must be 4 bytes long) to represent the 32-bit floating point number
(little endian order) n.

set_f64be(self, n: number)

Set the stored byte sequence (must be 8 bytes long) to represent the 64-bit floating point number
(big endian order) n.

set_f64le(self, n: number)

Set the stored byte sequence (must be 8 bytes long) to represent the 64-bit floating point number
(little endian order) n.

Properties

capacity: integer

The capacity.

Metamethods
• __tostring()

• __len()

• __index()

• __newindex()

• __eq()

You can index the spans by numerical valued keys and the numerical (ASCII) value
for the underlying byte will be returned (or assigned on __newindex()).

[1] Allocation strategy (the new byte_span's capacity) is left unspecified and may change among Emilua releases.

byte_span | 113

condition_variable

local condition_variable = require('condition_variable')

local function queue_consumer()
 scope(function()
 scope_cleanup_push(function() queue_mtx:unlock() end)
 queue_mtx:lock()
 while #queue == 0 do
 queue_cond:wait(queue_mtx)
 end
 for _, e in ipairs(queue) do
 consume_item(e)
 end
 queue = {}
 end)
end

A condition variable.

Functions

new() → condition_variable

Constructor.

wait(self, m: mutex)

Read pthread_cond_wait()

wait() is an interruption point. Prior to the delivery of the interruption request, the underlying
mutex is re-acquired under the hood.

notify_all(self)

Read pthread_cond_broadcast().

notify_one(self)

Read pthread_cond_signal().

Notifying without a lock
If the condition variable, the notifier fiber and the waiting fiber all run in the same thread (and
cooperative multitasking is used instead preemptive multitasking), then there is enough level of
determinism to lift one restriction that exists in traditional condition variables.

Even if the shared variable is atomic, it must be modified under the mutex

condition_variable | 114

in order to correctly publish the modification to the waiting thread.

— https://en.cppreference.com/w/cpp/thread/condition_variable

The reason why this restriction on the notifier fiber/thread exists is to avoid a race. Consider the
following waiter fiber and the notifier fiber:

local function consumer()
 scope(function()
 scope_cleanup_push(function() m:unlock() end)
 m:lock()
 while not ready do
 c:wait(m)
 end

 -- ...
 end)
end

local function producer()
 ready = true
 c:notify_one()
end

Pay attention to the points when the waiter fiber checks if the event has been signalled by testing
ready and the instant it blocks on c.wait(). If the notifier fiber mutates the shared variable and calls
c.notify_one() between these two points, then the signalization is lost. c.notify_one() would be
called by the time there would be no fiber blocked on c.wait(). That’s why the notifier fiber need to
mutate the shared variable through a mutex.

In Emilua, this restriction doesn’t apply (as long as there are no suspension points between the time
the waiting fiber tests the condition and calls c.wait()) and the notifier fiber can mutate the shared
variable without holding a lock on the mutex. In this case, the condition variable essentially
becomes a non-suspending way (post semantics) to unpark a parked fiber (yes, I’ve exploited this
property in the past to avoid a few round-trips).

condition_variable | 115

https://en.cppreference.com/w/cpp/thread/condition_variable

filesystem.path
Objects of this class abstract path-manipulation algorithms for the host operating system.

Methods from this class are purely computational and never trigger any syscall. They only operate
on the in-memory representation of a path. They do not perform any operation on the filesytem.
They do not initiate any I/O request.

Paths are immutable. Any operation on a path will return a new path with the result.

Functions

new() → path

new() ①
new(str) ②

① Default constructor.

② Create a path from an UTF-8 encoded string (in the host system format).

from_generic(source: string) → path

Creates a path from the generic non-native format.

to_generic(self) → string

Returns the path in the generic format encoded in UTF-8.

iterator(self) → function

Returns an iterator to the path components (as strings). The iteration order follows:

1. The root name, if any.

2. The root directory, if any.

3. The sequence of file names, omitting directory separators.

4. If there is a directory separator after the last file name in the path, the last element is an empty
element.

make_preferred(self) → path

Returns a new path where all directory separators are converted to the preferred directory
separator.

On Windows, where "\" is the preferred separator, the path "foo/bar" will be
converted to "foo\bar".

filesystem.path | 116

remove_filename(self) → path

Returns a new path where the filename component is removed.

replace_filename(self, replacement: string|path) → path

Returns a new path where the filename component is replaced.

replace_extension(self[, replacement: string|path]) → path

Returns a new path where the extension is replaced (or removed on nil).

lexically_normal(self) → path

Returns a new path converted to normal form.

lexically_relative(self, base: string|path) → path

Returns a new path where self is made relative to base.

lexically_proximate(self, base: string|path) → path

Same as above if the return is non empty. Same as self, otherwise.

Properties

root_name: string

Returns the root name, or an empty path.

root_directory: string

Returns the root directory, or an empty path.

root_path: path

Returns path.new(root_name) / root_directory.

relative_path: path

Returns path relative to root_path.

parent_path: path

Returns the path to the parent directory.

filename: string

Returns filename component.

filesystem.path | 117

stem: string

Returns filename component stripped of its extension.

extension: string

Returns the extension of the filename component.

empty: boolean

Whether the path is empty.

has_root_path: boolean

Whether the root path is non-empty.

has_root_name: boolean

Whether the root name is non-empty.

has_root_directory: boolean

Whether the root directory is non-empty.

has_relative_path: boolean

Whether relative path is non-empty.

has_parent_path: boolean

Whether the parent path is non-empty.

has_filename: boolean

Whether the filename is non-empty.

has_stem: boolean

Whether the stem is non-empty.

has_extension: boolean

Whether the extension is non-empty.

is_absolute: boolean

Whether the path is absolute.

is_relative: boolean

Whether the path is relative.

filesystem.path | 118

Metamethods
• __tostring(): Encodes the native representation as UTF-8 and returns it.

• __eq(): Compares two paths lexicographically.

• __lt(): Compares two paths lexicographically.

• __le(): Compares two paths lexicographically.

• __div(): Concatenates two paths with a directory separator.

• __concat(): Concatenates the underlying native representation of the paths (i.e. no additional
directory separators are introduced). This operation may not be portable between operating
systems.

Module attributes

preferred_separator: string

The preferred directory separator on the host operating system encoded in UTF-8.

filesystem.path | 119

filesystem.mode

Synopsis

local fs = require "filesystem"

fs.mode(user: integer, group: integer, other: integer) -> integer ①
fs.mode("set_uid"|"set_gid"|"sticky_bit") -> integer ②

Description
A helper function to create POSIX mode permission bits.

The implementation for overload #1 is:

function mode(user: integer, group: integer, other: integer) -> integer
 return bit.bor(bit.lshift(user, 6), bit.lshift(group, 3), other)
end

The meaning for overload #2’s parameters:

"set_uid"

S_ISUID

"set_gid"

S_ISGID

"sticky_bit"

S_ISVTX

filesystem.mode | 120

filesystem.directory_entry
The object returned by directory iterators. Objects of this class cannot be created directly.

Functions

refresh(self)

Updates the cached file attributes.

Properties

path: filesystem.path

The path the entry refers to.

file_size: integer

The size in bytes of the file to which the directory entry refers to.

hardlink_count: integer

The number of hard links referring to the file to which the directory entry refers to.

last_write_time: filesystem.clock.time_point

The time of the last data modification of the file to which the directory entry refers to.

status

Returns the same value as filesystem.status().

symlink_status

Returns the same value as filesystem.symlink_status().

filesystem.directory_entry | 121

filesystem.directory_iterator

Synopsis

local fs = require "filesystem"
fs.directory_iterator(p: fs.path[, opts: table]) -> function

Description
Returns an iterator function that, each time it is called, returns a filesystem.directory_entry object
for an element of the directory p.

opts
skip_permission_denied: boolean = false

On true, an EPERM will not be reported. Instead, an iterator to an empty collection will be
returned.

filesystem.directory_iterator | 122

filesystem.recursive_directory_iterator

Synopsis

local fs = require "filesystem"
fs.recursive_directory_iterator(p: fs.path[, opts: table]) -> function, handle

Description
Returns an iterator function, and a handle to control iteration.

Each time the iterator is called, returns a filesystem.directory_entry object for an element of the
directory p (and, recursively, over the entries of all of its subdirectories), and the current recursion
depth (an integer).

opts
skip_permission_denied: boolean = false

Whether to skip directories that would otherwise result in EPERM.

follow_directory_symlink: boolean = false

Whether to follow directory symlinks.

Wrapping the iterator to skip over CVS files.
Some programs such as rsync have command line options such as --cvs-exclude that skip over
unwanted files for the directory traversal. Such patterns can be easily abstracted on top of
recursive_directory_iterator. Here’s the implementation for a function that does just that:

function cvs_exclude(iter, ctrl)
 local function next()
 local entry, depth = iter()
 if entry == nil then
 return
 end

 local p = entry.path.filename
 if p == ".git" or p == ".svn" or p == ".hg" then
 ctrl:disable_recursion_pending()
 end
 return entry, depth
 end
 return next, ctrl
end

filesystem.recursive_directory_iterator | 123

 The same trick can be used to create functions to perform shell globbing.

handle functions

pop(self)

Moves the iterator one level up in the directory hierarchy.

disable_recursion_pending(self)

Disables recursion until the next increment.

handle properties

recursion_pending: boolean

Whether the recursion is disabled for the current directory.

Example

local fs = require "filesystem"

for entry, depth in fs.recursive_directory_iterator(fs.path.new(".")) do
 print(string.rep("\t", depth) .. entry.path.filename)
end

filesystem.recursive_directory_iterator | 124

filesystem.absolute

Synopsis

local fs = require "filesystem"
fs.absolute(p: fs.path) -> fs.path

Description
Returns a path referencing the same file system location as p, for which
filesystem.path.is_absolute is true.

filesystem.absolute | 125

filesystem.canonical

Synopsis

local fs = require "filesystem"
fs.canonical(p: fs.path) -> fs.path

Description
Returns a canonical absolute path referencing the same file system location as p.

filesystem.canonical | 126

filesystem.weakly_canonical

Synopsis

local fs = require "filesystem"
fs.weakly_canonical(p: fs.path) -> fs.path

Description
Returns a path in normal form referencing the same file system location as p.

filesystem.weakly_canonical | 127

filesystem.relative

Synopsis

local fs = require "filesystem"
fs.relative(p: fs.path, base: fs.path = fs.current_working_directory()) -> fs.path

Description
See https://en.cppreference.com/w/cpp/filesystem/relative.

filesystem.relative | 128

https://en.cppreference.com/w/cpp/filesystem/relative

filesystem.proximate

Synopsis

local fs = require "filesystem"
fs.proximate(p: fs.path, base: fs.path = fs.current_working_directory()) -> fs.path

Description
See https://en.cppreference.com/w/cpp/filesystem/relative.

filesystem.proximate | 129

https://en.cppreference.com/w/cpp/filesystem/relative

filesystem.current_working_directory

Synopsis

local fs = require "filesystem"
fs.current_working_directory() -> fs.path ①
fs.current_working_directory(p: fs.path|file_descriptor) ②

① Get the current working directory.

② Set the current working directory.

Description
Get or set the current working directory for the calling process.

 Only the master VM is allowed to change the current working directory.

filesystem.current_working_directory | 130

filesystem.chroot

Synopsis

local fs = require "filesystem"
fs.chroot(p: fs.path)

Description
Set the root directory for the calling process.

 Only the master VM is allowed to change the root directory.

filesystem.chroot | 131

filesystem.copy

Synopsis

local fs = require "filesystem"
fs.copy(from: fs.path, to: fs.path[, opts: table])

Description
See https://en.cppreference.com/w/cpp/filesystem/copy.

opts
existing: "skip"|"overwrite"|"update"|nil

Behavior when the file already exists.

nil

Report an error.

"skip"

Keep the existing file, without reporting an error.

"overwrite"

Replace the existing file.

"update"

Replace the existing file only if it is older than the file being copied.

recursive: boolean = false

false

Skip subdirectories.

true

Recursively copy subdirectories and their content.

symlinks: "copy"|"skip"|nil

nil

Follow symlinks.

"copy"

Copy symlinks as symlinks, not as the files they point to.

"skip"

Ignore symlinks.

filesystem.copy | 132

https://en.cppreference.com/w/cpp/filesystem/copy

copy: "directories_only"|"create_symlinks"|"create_hardlinks"|nil

nil

Copy file content.

"directories_only"

Copy the directory structure, but do not copy any non-directory files.

"create_symlinks"

Instead of creating copies of files, create symlinks pointing to the originals.

"create_hardlinks"

Instead of creating copies of files, create hardlinks that resolve to the same files as the
originals.

filesystem.copy | 133

filesystem.copy_file

Synopsis

local fs = require "filesystem"
fs.copy_file(from: fs.path, to: fs.path[, on_existing: "skip"|"overwrite"|"update"])
-> boolean

Description
See https://en.cppreference.com/w/cpp/filesystem/copy_file.

on_existing
Behavior when the file already exists.

nil

Report an error.

"skip"

Keep the existing file, without reporting an error.

"overwrite"

Replace the existing file.

"update"

Replace the existing file only if it is older than the file being copied.

filesystem.copy_file | 134

https://en.cppreference.com/w/cpp/filesystem/copy_file

filesystem.copy_symlink

Synopsis

local fs = require "filesystem"
fs.copy_symlink(from: fs.path, to: fs.path)

Description
See https://en.cppreference.com/w/cpp/filesystem/copy_symlink.

filesystem.copy_symlink | 135

https://en.cppreference.com/w/cpp/filesystem/copy_symlink

filesystem.create_directory

Synopsis

local fs = require "filesystem"
fs.create_directory(p: fs.path[, existing_p: fs.path]) -> boolean
fs.create_directories(p: fs.path) -> boolean

Description
Creates the directory p as if by POSIX mkdir() with a second argument of 0777. If the function fails
because p resolves to an existing directory, no error is reported.

If existing_p is given, then the attributes of the new directory are copied from existing_p.

filesystem.create_directories() calls filesystem.create_directory() for every element of p that
does not already exist.

Returns whether a directory was created for the directory p resolves to.

See also
• filesystem.mkdir(3em)

filesystem.create_directory | 136

filesystem.mkdir

Synopsis

local fs = require "filesystem"
fs.mkdir(p: fs.path, mode: integer)

Description
See mkdir(3).

 Not available on Windows.

See also
• filesystem.create_directory(3em)

filesystem.mkdir | 137

filesystem.create_hardlink

Synopsis

local fs = require "filesystem"
fs.create_hardlink(target: fs.path, link: fs.path)

Description
See https://en.cppreference.com/w/cpp/filesystem/create_hard_link.

filesystem.create_hardlink | 138

https://en.cppreference.com/w/cpp/filesystem/create_hard_link

filesystem.create_symlink

Synopsis

local fs = require "filesystem"
fs.create_symlink(target: fs.path, link: fs.path)
fs.create_directory_symlink(target: fs.path, link: fs.path)

Description
See https://en.cppreference.com/w/cpp/filesystem/create_symlink.

filesystem.create_symlink | 139

https://en.cppreference.com/w/cpp/filesystem/create_symlink

filesystem.mkfifo

Synopsis

local fs = require "filesystem"
fs.mkfifo(p: fs.path, mode: integer)

Description
See mkfifo(3).

filesystem.mkfifo | 140

filesystem.mknod

Synopsis

local fs = require "filesystem"
fs.mknod(p: fs.path, mode: integer, dev: integer[, type: "character"|"block"])

Description
See mknod(3).

If type is provided, S_IFCHR or S_IFBLK is OR’ed into mode.

filesystem.mknod | 141

filesystem.makedev

Synopsis

local fs = require "filesystem"
fs.makedev(major: integer, minor: integer) -> integer

Description
See makedev(3).

filesystem.makedev | 142

filesystem.equivalent

Synopsis

local fs = require "filesystem"
fs.equivalent(p1: fs.path, p2: fs.path) -> boolean

Description
See https://en.cppreference.com/w/cpp/filesystem/equivalent.

filesystem.equivalent | 143

https://en.cppreference.com/w/cpp/filesystem/equivalent

filesystem.file_size

Synopsis

local fs = require "filesystem"
fs.file_size(p: fs.path) -> integer

Description
For a regular file p, returns its size in bytes.

filesystem.file_size | 144

filesystem.hardlink_count

Synopsis

local fs = require "filesystem"
fs.hardlink_count(p: fs.path) -> integer

Description
Returns the number of hard links for the filesystem object identified by path p.

filesystem.hardlink_count | 145

filesystem.clock

local clock = require('filesystem').clock

A clock to represent file time. Its epoch is unspecified.

Functions

now() → clock.time_point

Returns a new time point representing the current value of the clock.

epoch() → clock.time_point

Returns a new time point representing the epoch of the clock.

unix_epoch() → clock.time_point

Returns a new time point representing 00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970.

from_system(tp: time.system_clock.time_point) → clock.time_point

Converts tp to a clock.time_point representing the same point in time.

time_point functions

add(self, secs: number)

Modifies the time point by the given duration.

When the duration is converted to the native tick representation of the clock, it’ll
be rounded to the nearest time point rounding to even in halfway cases.

sub(self, secs: number)

Modifies the time point by the given duration.

When the duration is converted to the native tick representation of the clock, it’ll
be rounded to the nearest time point rounding to even in halfway cases.

to_system(self) → time.system_clock.time_point

Converts self to a time.system_clock.time_point representing the same point in time.

filesystem.clock | 146

time_point properties

seconds_since_epoch: number

The number of elapsed seconds since the clock’s epoch.

seconds_since_unix_epoch: number

The number of elapsed seconds since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970.

time_point metamethods
• __add()

• __sub()

• __eq()

• __lt()

• __le()

filesystem.clock | 147

filesystem.last_write_time

Synopsis

local fs = require "filesystem"
fs.last_write_time(p: fs.path) -> fs.clock.time_point ①
fs.last_write_time(p: fs.path, tp: fs.clock.time_point) ②

① Get last write time.

② Set last write time.

Description
Get or set the time of the last modification of p.

 Symlinks are followed.

It is not guaranteed that immediately after setting the write time, the value
returned by (1) is the same as what was passed as the argument to (2) because the
file system’s time may be more granular than filesystem.clock.time_point.

filesystem.last_write_time | 148

filesystem.chown

Synopsis

local fs = require "filesystem"
fs.chown(p: fs.path, owner: integer, group: integer)
fs.lchown(p: fs.path, owner: integer, group: integer)

Description
Changes POSIX owner and group of the file to which p resolves.

If the owner or group is specified as -1, then that ID is not changed.

filesystem.chown | 149

filesystem.chmod

Synopsis

local fs = require "filesystem"
fs.chmod(p: fs.path, mode: integer)
fs.lchmod(p: fs.path, mode: integer)

Description
Changes POSIX access permissions of the file to which p resolves.

filesystem.chmod | 150

filesystem.read_symlink

Synopsis

local fs = require "filesystem"
fs.read_symlink(p: fs.path) -> fs.path

Description
Returns a new path which refers to the target of the symbolic link.

filesystem.read_symlink | 151

filesystem.remove

Synopsis

local fs = require "filesystem"
fs.remove(p: fs.path) -> boolean
fs.remove_all(p: fs.path) -> integer

Description
See https://en.cppreference.com/w/cpp/filesystem/remove.

filesystem.remove | 152

https://en.cppreference.com/w/cpp/filesystem/remove

filesystem.rename

Synopsis

local fs = require "filesystem"
fs.rename(old_p: fs.path, new_p: fs.path)

Description
See https://en.cppreference.com/w/cpp/filesystem/rename.

filesystem.rename | 153

https://en.cppreference.com/w/cpp/filesystem/rename

filesystem.resize_file

Synopsis

local fs = require "filesystem"
fs.resize_file(p: fs.path, new_size: integer)

Description
See https://en.cppreference.com/w/cpp/filesystem/resize_file.

filesystem.resize_file | 154

https://en.cppreference.com/w/cpp/filesystem/resize_file

filesystem.is_empty

Synopsis

local fs = require "filesystem"
fs.is_empty(p: fs.path) -> boolean

Description
Checks whether the given path refers to an empty file or directory.

filesystem.is_empty | 155

filesystem.exists

Synopsis

local fs = require "filesystem"
fs.exists(p: fs.path) -> boolean

Description
Checks whether the given path refers to an existing file or directory.

filesystem.exists | 156

filesystem.is_block_device

Synopsis

local fs = require "filesystem"
fs.is_block_device(p: fs.path) -> boolean

Description
Checks whether the given path refers to a block special file.

filesystem.is_block_device | 157

filesystem.is_character_device

Synopsis

local fs = require "filesystem"
fs.is_character_device(p: fs.path) -> boolean

Description
Checks whether the given path refers to a character special file.

filesystem.is_character_device | 158

filesystem.is_directory

Synopsis

local fs = require "filesystem"
fs.is_directory(p: fs.path) -> boolean

Description
Checks whether the given path refers to a directory.

filesystem.is_directory | 159

filesystem.is_fifo

Synopsis

local fs = require "filesystem"
fs.is_fifo(p: fs.path) -> boolean

Description
Checks whether the given path refers to a FIFO or pipe file.

filesystem.is_fifo | 160

filesystem.is_other

Synopsis

local fs = require "filesystem"
fs.is_other(p: fs.path) -> boolean

Description
Checks whether the given path refers to a file of type other type. That is, the file exists, but is
neither regular file, nor directory nor a symlink.

filesystem.is_other | 161

filesystem.is_regular_file

Synopsis

local fs = require "filesystem"
fs.is_regular_file(p: fs.path) -> boolean

Description
Checks whether the given path refers to a regular file.

filesystem.is_regular_file | 162

filesystem.is_socket

Synopsis

local fs = require "filesystem"
fs.is_socket(p: fs.path) -> boolean

Description
Checks whether the given path refers to a named IPC socket.

filesystem.is_socket | 163

filesystem.is_symlink

Synopsis

local fs = require "filesystem"
fs.is_symlink(p: fs.path) -> boolean

Description
Checks whether the given path refers to a symbolic link.

filesystem.is_symlink | 164

filesystem.space

Synopsis

local fs = require "filesystem"
fs.space(p: fs.path) -> { capacity: integer, free: integer, available: integer }

Description
Determines the information about the filesystem on which the pathname p is located.

 Bytes are used for the units.

filesystem.space | 165

filesystem.status

Synopsis

local fs = require "filesystem"
fs.status(p: fs.path) -> { type: string, mode: integer|"unknown" }
fs.symlink_status(p: fs.path) -> { type: string, mode: integer|"unknown" }

Description
See https://en.cppreference.com/w/cpp/filesystem/status.

The acceptable strings for the member named type in the returned object are:

• "not_found"

• "regular"

• "directory"

• "symlink"

• "block"

• "character"

• "fifo"

• "socket"

• "junction" (Windows-only)

• "unknown"

The member named mode in the returned object refers to the POSIX file access mode (permissions).

filesystem.status | 166

https://en.cppreference.com/w/cpp/filesystem/status

filesystem.temp_directory_path

Synopsis

local fs = require "filesystem"
fs.temp_directory_path() -> fs.path

Description
Returns the directory location suitable for temporary files.

filesystem.temp_directory_path | 167

filesystem.umask

Synopsis

local fs = require "filesystem"
fs.umask(mask: integer) -> integer

Description
Sets the file mode creation mask (umask) of the calling process to mask & 0777.

Returns the old mask.

 Only the master VM is allowed to use this function.

filesystem.umask | 168

filesystem.cap_get_file

Synopsis

local fs = require "filesystem"
fs.cap_get_file(path: fs.path) -> system.linux_capabilities

Description
See cap_get_file(3).

filesystem.cap_get_file | 169

filesystem.cap_set_file

Synopsis

local fs = require "filesystem"
fs.cap_set_file(path: fs.path, caps: system.linux_capabilities)

Description
See cap_set_file(3).

filesystem.cap_set_file | 170

file.random_access

Functions

new() → file.random_access

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into a file.random_access object.

open(self, path: filesystem.path, flags: string[])

Open the file using the specified path.

flags may contain:

"append"

Open the file in append mode.

"create"

Create the file if it does not exist.

"exclusive"

Ensure a new file is created. Must be combined with create.

"read_only"

Open the file for reading.

"read_write"

Open the file for reading and writing.

"sync_all_on_write"

Open the file so that write operations automatically synchronise the file data and metadata to
disk (FILE_FLAG_WRITE_THROUGH/O_SYNC).

"truncate"

Open the file with any existing contents truncated.

"write_only"

Open the file for writing.

close(self)

Close the file.

file.random_access | 171

Forward the call to the function with same name in Boost.Asio:

Any asynchronous read or write operations will be cancelled immediately,
and will complete with the boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the file.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous read and write
operations to finish immediately, and the handlers for cancelled operations
will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native file to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous read and write
operations to finish immediately, and the handlers for cancelled operations
will be passed the boost::asio::error::operation_aborted error. Ownership
of the native file is then transferred to the caller.

resize(self, n: integer)

Alter the size of the file.

This function resizes the file to the specified size, in bytes. If the current file size exceeds n then any
extra data is discarded. If the current size is less than n then the file is extended and filled with
zeroes

lock(self)

Acquires an exclusive advisory lock on the file.

See flock(2).

 Not available on Windows.

file.random_access | 172

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_random_access_file/close/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_random_access_file/cancel/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_random_access_file/release/overload2.html

lock_shared(self)

Acquires a shared advisory lock on the file.

See flock(2).

 Not available on Windows.

try_lock(self) → boolean

Tries to acquire an exclusive advisory lock on the file. Returns whether lock acquisition was
successful.

See flock(2).

 The current fiber is never suspended.

 Not available on Windows.

try_lock_shared(self) → boolean

Tries to acquire a shared advisory lock on the file. Returns whether lock acquisition was successful.

See flock(2).

 The current fiber is never suspended.

 Not available on Windows.

unlock(self)

Releases an existing advisory lock on the file held by this process.

See flock(2).

 The current fiber is never suspended.

 Not available on Windows.

read_some_at(self, offset: integer, buffer: byte_span) → integer

Read data from the file at the specified offset and blocks current fiber until it completes or errs.

Returns the number of bytes read.

Lua conventions on index starting at 1 are ignored. Indexes here are OS-mandated
and start at 0.

file.random_access | 173

write_some_at(self, offset: integer, buffer: byte_span) → integer

Write data to the file at the specified and blocks current fiber until it completes or errs.

Returns the number of bytes written.

Lua conventions on index starting at 1 are ignored. Indexes here are OS-mandated
and start at 0.

Properties

is_open: boolean

Whether the file is open.

size: integer

The size of the file.

file.random_access | 174

file.stream

Functions

new() → file.stream

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into a file.stream object.

open(self, path: filesystem.path, flags: string[])

Open the file using the specified path.

flags may contain:

"append"

Open the file in append mode.

"create"

Create the file if it does not exist.

"exclusive"

Ensure a new file is created. Must be combined with create.

"read_only"

Open the file for reading.

"read_write"

Open the file for reading and writing.

"sync_all_on_write"

Open the file so that write operations automatically synchronise the file data and metadata to
disk (FILE_FLAG_WRITE_THROUGH/O_SYNC).

"truncate"

Open the file with any existing contents truncated.

"write_only"

Open the file for writing.

close(self)

Close the file.

file.stream | 175

Forward the call to the function with same name in Boost.Asio:

Any asynchronous read or write operations will be cancelled immediately,
and will complete with the boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the file.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous read and write
operations to finish immediately, and the handlers for cancelled operations
will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native file to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous read and write
operations to finish immediately, and the handlers for cancelled operations
will be passed the boost::asio::error::operation_aborted error. Ownership
of the native file is then transferred to the caller.

resize(self, n: integer)

Alter the size of the file.

This function resizes the file to the specified size, in bytes. If the current file size exceeds n then any
extra data is discarded. If the current size is less than n then the file is extended and filled with
zeroes

seek(self, offset: integer, whence: string) → integer

Sets and gets the file position, measured from the beginning of the file, to the position given by
offset plus a base specified by the string whence, as follows:

"set"

Seek to an absolute position.

"cur"

Seek to an offset relative to the current file position.

file.stream | 176

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_file/close/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_file/cancel/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_file/release/overload2.html

"end"

Seek to an offset relative to the end of the file.

Returns the final file position, measured in bytes from the beginning of the file.

Lua conventions on index starting at 1 are ignored. Indexes here are OS-mandated
and start at 0.

lock(self)

Acquires an exclusive advisory lock on the file.

See flock(2).

 Not available on Windows.

lock_shared(self)

Acquires a shared advisory lock on the file.

See flock(2).

 Not available on Windows.

try_lock(self) → boolean

Tries to acquire an exclusive advisory lock on the file. Returns whether lock acquisition was
successful.

See flock(2).

 The current fiber is never suspended.

 Not available on Windows.

try_lock_shared(self) → boolean

Tries to acquire a shared advisory lock on the file. Returns whether lock acquisition was successful.

See flock(2).

 The current fiber is never suspended.

 Not available on Windows.

unlock(self)

Releases an existing advisory lock on the file held by this process.

file.stream | 177

See flock(2).

 The current fiber is never suspended.

 Not available on Windows.

read_some(self, buffer: byte_span) → integer

Read data from the stream file and blocks current fiber until it completes or errs.

Returns the number of bytes read.

write_some(self, buffer: byte_span) → integer

Write data to the stream file and blocks current fiber until it completes or errs.

Returns the number of bytes written.

Properties

is_open: boolean

Whether the file is open.

size: integer

The size of the file.

file.stream | 178

file.read_all_at

Synopsis

local file = require "file"
file.read_all_at(io_object, offset: integer, buffer: byte_span) -> integer

Description
Attempt to read a certain amount of data at the specified offset before returning.

This operation is implemented in terms of zero or more calls to the device’s
read_some_at function.

file.read_all_at | 179

file.read_at_least_at

Synopsis

local file = require "file"
file.read_at_least_at(io_object, offset: integer, buffer: byte_span, minimum: integer)
-> integer

Description
Attempt to read a certain amount of data at the specified offset before returning.

This operation is implemented in terms of zero or more calls to the device’s
read_some_at function.

file.read_at_least_at | 180

file.write_all_at

Synopsis

local file = require "file"
file.write_all_at(io_object, offset: integer, buffer: byte_span|string) -> integer

Description
Write all of the supplied data at the specified offset before returning.

This operation is implemented in terms of zero or more calls to the device’s
write_some_at function.

file.write_all_at | 181

file.write_at_least_at

Synopsis

local file = require "file"
file.write_at_least_at(io_object, offset: integer, buffer: byte_span, minimum:
integer) -> integer

Description
Write data until a minimum number of bytes has been transferred at the specified offset before
returning.

This operation is implemented in terms of zero or more calls to the device’s
write_some_at function.

file.write_at_least_at | 182

ip.address
A variant type to represent IPv4 and IPv6 addresses. Some features are only available for one
version of the protocol and will raise an error when you try to use it against an IP address of a
different version.

Functions

new() → ip.address

new() ①
new(str) ②

① Default constructor.

② Create an IPv4 address in dotted decimal form, or from an IPv6 address in hexadecimal
notation.

any_v4() → ip.address

Create an address object that represents any (v4) address.

any_v6() → ip.address

Create an address object that represents any (v6) address.

loopback_v4() → ip.address

Create an address object that represents the loopback (v4) address.

loopback_v6() → ip.address

Create an address object that represents the loopback (v6) address.

broadcast_v4() → ip.address

Create an address object that represents the broadcast (v4) address.

Functions (v4)

to_v6(self) → ip.address

Create an IPv4-mapped IPv6 address.

Functions (v6)

to_v4(self) → ip.address

Create an IPv4 address from a IPv4-mapped IPv6 address.

ip.address | 183

Properties

is_loopback: boolean

Whether the address is a loopback address.

is_multicast: boolean

Whether the address is a multicast address.

is_unspecified: boolean

Whether the address is unspecified.

is_v4: boolean

Whether the address is an IP version 4 address.

is_v6: boolean

Whether the address is an IP version 6 address.

Properties (v6)
An error will be raised if you try to use against a v4 object.

is_link_local: boolean

Whether the address is link local.

is_multicast_global: boolean

Whether the address is a global multicast address.

is_multicast_link_local: boolean

Whether the address is a link-local multicast address.

is_multicast_node_local: boolean

Whether the address is a node-local multicast address.

is_multicast_org_local: boolean

Whether the address is a org-local multicast address.

is_multicast_site_local: boolean

Whether the address is a site-local multicast address.

ip.address | 184

is_site_local: boolean

Whether the address is site local.

is_v4_mapped: boolean

Whether the address is a mapped IPv4 address.

scope_id: integer

The scope ID of the address. Read-write property.

Metamethods
• __tostring()

• __eq()

• __lt()

• __le()

ip.address | 185

ip.get_address_info

Synopsis

local ip = require "ip"

ip.tcp.get_address_info()
ip.tcp.get_address_v4_info()
ip.tcp.get_address_v6_info()
ip.udp.get_address_info()
ip.udp.get_address_v4_info()
ip.udp.get_address_v6_info()

function(host: string|ip.address, service: string|integer[, flags: string[]])
 -> { address: ip.address, port: integer, canonical_name: string|nil }[]

Description
Forward-resolves host and service into a list of endpoint entries. Current fiber is suspended until
operation finishes.

If no flags are passed to this function (i.e. flags is nil) then this function will
follow the glibc defaults even on non-glibc systems:
bit.bor(address_configured,v4_mapped).

Returns a list of entries. Each entry will be a table with the following members:

• address: ip.address.

• port: integer.

If "canonical_name" is passed in flags then each entry will also include:

• canonical_name: string.

More info on Boost.Asio documentation.

If host is an ip.address then no host name resolution should be attempted.

If service is a number then no service name resolution should be attempted.

Flags

address_configured

The flag with same name in Boost.Asio:

ip.get_address_info | 186

https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__basic_resolver/async_resolve/overload3.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__resolver_base/address_configured.html

Only return IPv4 addresses if a non-loopback IPv4 address is configured for
the system. Only return IPv6 addresses if a non-loopback IPv6 address is
configured for the system.

all_matching

The flag with same name in Boost.Asio:

If used with v4_mapped, return all matching IPv6 and IPv4 addresses.

canonical_name

The flag with same name in Boost.Asio:

Determine the canonical name of the host specified in the query.

passive

The flag with same name in Boost.Asio:

Indicate that returned endpoint is intended for use as a locally bound socket
endpoint.

v4_mapped

The flag with same name in Boost.Asio:

If the query protocol family is specified as IPv6, return IPv4-mapped IPv6
addresses on finding no IPv6 addresses.

ip.get_address_info | 187

https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__resolver_base/all_matching.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__resolver_base/canonical_name.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__resolver_base/passive.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__resolver_base/v4_mapped.html

ip.get_name_info

Synopsis

local ip = require "ip"

ip.tcp.get_name_info()
ip.udp.get_name_info()

function(a: ip.address, port: integer)
 -> { host_name: string, service_name: string }[]

Description
Reverse-resolves the endpoint into a list of entries. Current fiber is suspended until operation
finishes.

Returns a list of entries. Each entry will be a table with the following members:

• host_name: string.

• service_name: string.

More info on Boost.Asio documentation.

ip.get_name_info | 188

https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/ip__basic_resolver/async_resolve/overload6.html

ip.connect

Synopsis

local ip = require "ip"
ip.connect(sock, resolve_results: table[, condition: function]) -> ip.address, integer

Description
Attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the
socket's connect member function, once for each endpoint in the sequence, until a connection is
successfully established.

Parameters

sock

The socket to be connected. If the socket is already open, it will be closed.

resolve_results

The return from the function get_address_info(). If the sequence is empty, the error not_found will
be raised.

condition

A function that is called prior to each connection attempt. The signature of the function object must
be:

function condition(last_error, next_address, next_port) -> boolean

The last_error parameter contains the result from the most recent connect operation. Before the
first connection attempt, last_error is nil. The next parameters together specify the next endpoint
to be tried. The closure should return true if the next endpoint should be tried, and false if it
should be skipped.

Example

local addr, port = ip.connect(
 sock, ip.tcp.get_address_info("www.example.com", "http"),
 function(last_error, next_addr, next_port)
 if last_error then
 print("Error: " .. tostring(last_error))
 end

ip.connect | 189

 print("Trying: " .. ip.tostring(next_addr, next_port))
 return true
 end
)
print("Connected to: " .. ip.tostring(addr, port))

ip.connect | 190

ip.dial

Synopsis

local ip = require "ip"

ip.tcp.dial()
ip.udp.dial()

function(ep: string) -> socket

Description
1. Creates a socket.

2. Breaks ep into host and service.

3. Forward-resolves host and service into a list of endpoints.

4. Connects the created socket to any of the resolved endpoints.

5. Returns the connected socket.

Current fiber is suspended until operation finishes.

ip.dial | 191

ip.host_name

Synopsis

local ip = require "ip"
ip.host_name() -> string

Description
Get the current host name.

ip.host_name | 192

ip.tostring

Synopsis

local ip = require "ip"
ip.tostring(addr: ip.address[, port: integer]) -> string

Description
Convert a traditional network endpoint (IP address + unsigned 16-bit integer) to its string
representation. If port is nil, then perform the equivalent of tostring(addr).

ip.tostring | 193

ip.toendpoint

Synopsis

local ip = require "ip"
ip.toendpoint(ep: string) -> ip.address, integer

Description
Convert a traditional network endpoint (IP address + unsigned 16-bit integer) from its string
representation to its decoupled members.

ip.toendpoint | 194

ip.tcp.listen

Synopsis

local ip = require "ip"

ip.tcp.listen(ep: string) -> ip.tcp.acceptor

Description
1. Creates a socket.

2. Set common options (e.g. reuse-address).

3. Binds the socket to ep.

4. Put the socket in the listening state.

5. Returns the socket.

ip.tcp.listen | 195

ip.tcp.acceptor

local a = ip.tcp.acceptor.new()
a:open('v4')
a:set_option('reuse_address', true)
a:bind('127.0.0.1', 8080)
a:listen()

while true do
 local s = a:accept()
 spawn(function()
 my_client_handler(s)
 end)
end

Functions

new() → ip.tcp.acceptor

Constructor.

open(self, address_family: "v4"|"v6"|ip.address)

Open the acceptor.

address_family can be either "v4" or "v6". If you provide an ip.address object, the appropriate value
will be inferred.

set_option(self, opt: string, val)

Set an option on the acceptor.

Currently available options are:

"reuse_address"

Check Boost.Asio documentation.

"enable_connection_aborted"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

"v6_only"

Check Boost.Asio documentation.

ip.tcp.acceptor | 196

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/reuse_address.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/enable_connection_aborted.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_v6_only.html

get_option(self, opt: string) → value

Get an option from the acceptor.

Currently available options are:

"reuse_address"

Check Boost.Asio documentation.

"enable_connection_aborted"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

"v6_only"

Check Boost.Asio documentation.

bind(self, addr: ip.address|string, port: integer)

Bind the acceptor to the given local endpoint.

listen(self [, backlog: integer])

Place the acceptor into the state where it will listen for new connections.

backlog is the maximum length of the queue of pending connections. If not provided, an
implementation defined maximum length will be used.

accept(self) → ip.tcp.socket

Initiate an accept operation and blocks current fiber until it completes or errs.

close(self)

Close the acceptor.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be
used to again perform socket accept operations.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and

ip.tcp.acceptor | 197

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/reuse_address.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/enable_connection_aborted.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_v6_only.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_socket_acceptor/close/overload2.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_socket_acceptor/cancel/overload2.html

receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, address_family: "v4"|"v6"|ip.address, fd: file_descriptor)

Assign an existing native acceptor to self.

address_family can be either "v4" or "v6". If you provide an ip.address object, the appropriate value
will be inferred.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous accept operations to
finish immediately, and the handlers for cancelled operations will be passed
the boost::asio::error::operation_aborted error. Ownership of the native
acceptor is then transferred to the caller.

Properties

is_open: boolean

Whether the acceptor is open.

local_address: ip.address

The local address endpoint of the acceptor.

local_port: integer

The local port endpoint of the acceptor.

ip.tcp.acceptor | 198

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_socket_acceptor/release/overload2.html

ip.tcp.socket

-- `socket_pair()` implementation is
-- left as an exercise for the reader
local a, b = socket_pair()

spawn(function()
 local buf = byte_span.new(1024)
 local nread = b:read_some(buf)
 print(buf:slice(1, nread))
end):detach()

local nwritten = stream.write_all(a, 'Hello World')
print(nwritten)

Functions

new() → ip.tcp.socket

Constructor.

open(self, address_family: "v4"|"v6"|ip.address)

Open the socket.

address_family can be either "v4" or "v6". If you provide an ip.address object, the appropriate value
will be inferred.

bind(self, addr: ip.address|string, port: integer)

Bind the socket to the given local endpoint.

close(self)

Close the socket.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the
boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

ip.tcp.socket | 199

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_socket/close/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_socket/cancel/overload2.html

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, address_family: "v4"|"v6"|ip.address, fd: file_descriptor)

Assign an existing native socket to self.

address_family can be either "v4" or "v6". If you provide an ip.address object, the appropriate value
will be inferred.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.
Ownership of the native socket is then transferred to the caller.

io_control(self, command: string[, …])

Perform an IO control command on the socket.

Currently available commands are:

"bytes_readable"

Expects no arguments. Get the amount of data that can be read without blocking. Implements
the FIONREAD IO control command.

shutdown(self, what: "receive"|"send"|"both")

Disable sends or receives on the socket.

what can be one of the following:

"receive"

Shutdown the receive side of the socket.

"send"

Shutdown the send side of the socket.

"both"

Shutdown both send and receive on the socket.

ip.tcp.socket | 200

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_stream_socket/release/overload2.html

connect(self, addr: ip.address, port: integer)

Initiate a connect operation and blocks current fiber until it completes or errs.

disconnect(self)

Dissolve the socket’s association by resetting the socket’s peer address (i.e. connect(3) will be called
with an AF_UNSPEC address).

read_some(self, buffer: byte_span) → integer

Read data from the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes read.

write_some(self, buffer: byte_span) → integer

Write data to the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

receive(self, buffer: byte_span, flags: string[]) → integer

Read data from the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes read.

send(self, buffer: byte_span, flags: string[]) → integer

Write data to the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

send_file(self, file: file.random_access, offset: integer, size_in_bytes:
integer[, head: byte_span[, tail: byte_span[, n_number_of_bytes_per_send:
integer]]]) → integer

A wrapper for the TransmitFile() function.

 Only available on Windows.

Lua conventions on index starting at 1 are ignored. Indexes here are OS-mandated
and start at 0.

wait(self, wait_type: "read"|"write"|"error")

Wait for the socket to become ready to read, ready to write, or to have pending error conditions.

In short, the reactor model is exposed on top of the proactor model.

You shouldn’t be using reactor-style operations on Emilua. However there’s this
one obsolete and buggy TCP feature that presumes reactor-style operations:

ip.tcp.socket | 201

https://docs.microsoft.com/en-us/windows/win32/api/mswsock/nf-mswsock-transmitfile
https://docs.microsoft.com/en-us/windows/win32/api/mswsock/nf-mswsock-transmitfile

SO_OOBINLINE (out_of_band_inline) + sockatmark() (at_mark). If you’re implementing
an ancient obscure protocol that for some reason can avoid the TCP OOB bugs then
you’ll need to use this function.

wait_type can be one of the following:

"read"

Wait for a socket to become ready to read.

"write"

Wait for a socket to become ready to write.

"error"

Wait for a socket to have error conditions pending.

set_option(self, opt: string, val)

Set an option on the socket.

Currently available options are:

"tcp_no_delay"

Check Boost.Asio documentation.

"send_low_watermark"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_low_watermark"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

"out_of_band_inline"

Socket option for putting received out-of-band data inline.

Do bear in mind that the BSD socket API for SO_OOBINLINE is incompatible with
proactor-style operations.

"linger"

Check Boost.Asio documentation.

"keep_alive"

Check Boost.Asio documentation.

ip.tcp.socket | 202

http://www.tcpipguide.com/free/t_TelnetInterruptHandlingUsingOutOfBandSignalingTheT.htm
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/ip__tcp/no_delay.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
http://www.serverframework.com/asynchronousevents/2011/10/out-of-band-data-and-overlapped-io.html
http://www.serverframework.com/asynchronousevents/2011/10/out-of-band-data-and-overlapped-io.html
http://www.serverframework.com/asynchronousevents/2011/10/out-of-band-data-and-overlapped-io.html
http://www.serverframework.com/asynchronousevents/2011/10/out-of-band-data-and-overlapped-io.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/linger.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/keep_alive.html

"do_not_route"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

"v6_only"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the socket.

Currently available options are:

"tcp_no_delay"

Check Boost.Asio documentation.

"send_low_watermark"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_low_watermark"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

"out_of_band_inline"

Check Boost.Asio documentation.

"linger"

Check Boost.Asio documentation.

"keep_alive"

Check Boost.Asio documentation.

"do_not_route"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

"v6_only"

Check Boost.Asio documentation.

ip.tcp.socket | 203

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/do_not_route.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_v6_only.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/ip__tcp/no_delay.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/out_of_band_inline.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/linger.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/keep_alive.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/do_not_route.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_v6_only.html

Function flags

do_not_route

The flag with same name in Boost.Asio:

Specify that the data should not be subject to routing.

end_of_record

The flag with same name in Boost.Asio:

Specifies that the data marks the end of a record.

out_of_band

The flag with same name in Boost.Asio:

Process out-of-band data.

peek

The flag with same name in Boost.Asio:

Peek at incoming data without removing it from the input queue.

Properties

is_open: boolean

Whether the socket is open.

local_address: ip.address

The local address endpoint of the socket.

local_port: integer

The local port endpoint of the socket.

remote_address: ip.address

The remote address endpoint of the socket.

remote_port: integer

The remote port endpoint of the socket.

ip.tcp.socket | 204

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_do_not_route.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_end_of_record.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_out_of_band.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_peek.html

at_mark: boolean

Whether the socket is at the out-of-band data mark.

You must set the out_of_band_inline socket option and use reactor-style operations
(wait()) to use this feature.

ip.tcp.socket | 205

ip.udp.socket

local sock = ip.udp.socket.new()
sock.open('v4')
sock:bind(ip.address.any_v4(), 1234)

local buf = byte_span.new(1024)
local nread, remote_addr, remote_port = sock:receive_from(buf)
sock:send_to(buf:slice(1, nread), remote_addr, remote_port)

Functions

new() → ip.udp.socket

Constructor.

open(self, address_family: "v4"|"v6"|ip.address)

Open the socket.

address_family can be either "v4" or "v6". If you provide an ip.address object, the appropriate value
will be inferred.

bind(self, addr: ip.address|string, port: integer)

Bind the socket to the given local endpoint.

shutdown(self, what: "receive"|"send"|"both")

Disable sends or receives on the socket.

what can be one of the following:

"receive"

Shutdown the receive side of the socket.

"send"

Shutdown the send side of the socket.

"both"

Shutdown both send and receive on the socket.

Doing this only mutates the socket object, but nothing will be sent over the wire. It
could be useful if you’re planning to send the FD around to other processes.

connect(self, addr: ip.address, port: integer)

Set the default destination address so datagrams can be sent using send() without specifying a

ip.udp.socket | 206

destination address.

disconnect(self)

Dissolve the socket’s association by resetting the socket’s peer address (i.e. connect(3) will be called
with an AF_UNSPEC address).

close(self)

Close the socket.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the
boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, address_family: "v4"|"v6"|ip.address, fd: file_descriptor)

Assign an existing native socket to self.

address_family can be either "v4" or "v6". If you provide an ip.address object, the appropriate value
will be inferred.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.
Ownership of the native socket is then transferred to the caller.

receive(self, buffer: byte_span[, flags: string[]]) → integer

Receive a datagram and blocks current fiber until it completes or errs.

ip.udp.socket | 207

https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_datagram_socket/close/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_datagram_socket/cancel/overload2.html
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_datagram_socket/release/overload2.html

Returns the number of bytes read.

receive_from(self, buffer: byte_span[, flags: string[]]) → integer,
ip.address, integer

Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the endpoint (address + port) of the remote sender of the
datagram.

send(self, buffer: byte_span[, flags: string[]]) → integer

Send data on the datagram socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

The send operation can only be used with a connected socket. Use the send_to
function to send data on an unconnected datagram socket.

send_to(self, buffer: byte_span, remote_addr: ip.address, remote_port:
integer[, flags: string[]]) → integer

Send a datagram to the specified remote endpoint and blocks current fiber until it completes or
errs.

Returns the number of bytes written.

set_option(self, opt: string, val)

Set an option on the socket.

Currently available options are:

"debug"

Check Boost.Asio documentation.

"broadcast"

Check Boost.Asio documentation.

"do_not_route"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

"reuse_address"

Check Boost.Asio documentation.

ip.udp.socket | 208

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/broadcast.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/do_not_route.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/reuse_address.html

"multicast_loop"

Check Boost.Asio documentation.

"multicast_hops"

Check Boost.Asio documentation.

"join_multicast_group"

Check Boost.Asio documentation.

"leave_multicast_group"

Check Boost.Asio documentation.

"multicast_interface"

Check Boost.Asio documentation.

"unicast_hops"

Check Boost.Asio documentation.

"v6_only"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the socket.

Currently available options are:

"debug"

Check Boost.Asio documentation.

"broadcast"

Check Boost.Asio documentation.

"do_not_route"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

"reuse_address"

Check Boost.Asio documentation.

"multicast_loop"

Check Boost.Asio documentation.

ip.udp.socket | 209

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_enable_loopback.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_hops.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_join_group.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_leave_group.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_outbound_interface.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_unicast%5F_hops.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_v6_only.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/broadcast.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/do_not_route.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/reuse_address.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_enable_loopback.html

"multicast_hops"

Check Boost.Asio documentation.

"unicast_hops"

Check Boost.Asio documentation.

"v6_only"

Check Boost.Asio documentation.

io_control(self, command: string[, …])

Perform an IO control command on the socket.

Currently available commands are:

"bytes_readable"

Expects no arguments. Get the amount of data that can be read without blocking. Implements
the FIONREAD IO control command.

Function flags

do_not_route

The flag with same name in Boost.Asio:

Specify that the data should not be subject to routing.

end_of_record

The flag with same name in Boost.Asio:

Specifies that the data marks the end of a record.

out_of_band

The flag with same name in Boost.Asio:

Process out-of-band data.

peek

The flag with same name in Boost.Asio:

Peek at incoming data without removing it from the input queue.

ip.udp.socket | 210

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_multicast%5F_hops.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_unicast%5F_hops.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ip%5F_v6_only.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_do_not_route.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_end_of_record.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_out_of_band.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_peek.html

Properties

is_open: boolean

Whether the socket is open.

local_address: ip.address

The local address endpoint of the socket.

local_port: integer

The local port endpoint of the socket.

remote_address: ip.address

The remote address endpoint of the socket.

remote_port: integer

The remote port endpoint of the socket.

ip.udp.socket | 211

json

-- Encoding

json.encode({'foo', {bar = {'baz', json.null, 1, 2}}})
--< '["foo", {"bar": ["baz", null, 1, 2]}]'
print(json.encode('\\'))
--< "\\"
print(json.encode({c = 0, b = 0, a = 0}))
--< {"a": 0, "b": 0, "c": 0}

-- Decoding

local obj = json.decode('["foo", {"bar":["baz", null, 1.0, 2]}]')
print(json.decode('"\\"foo\\bar"'))

Types
• json.writer(3em).

Constants

null: unspecified

The single object that represents the JSON null value.

It’s safe to compare against this object to test for JSON’s null.

 If you call tostring() on this object, the string "null" will be returned.

lexer_ecat

It comes straight from the imported library and we don’t really control the error codes.

dom_ecat

Errors from this category don’t mean the textual JSON representation is invalid. Rather, conversion
to/from lua value failed (e.g. number overflow would occur, nesting level too deep, cyclic
references, …).

This error category represents the very membrane between textual and Lua data representation.

Functions

decode(raw_json: string) → value

Deserialize raw_json to a lua value.

json | 212

https://github.com/breese/trial.protocol

local json_str = '{"items":[],"properties":{}}'
print(json_str)
print(json.encode(json.decode(json_str)))

will output (do note that order is unspecified and might change from emilua version to version):

{"items":[],"properties":{}}
{"properties":{},"items":[]}

encode(value[, opts: table]) → string

Serialize value to a JSON formatted string.

print(json.encode(json.null))
print(json.encode({hello = 'world', what = json.null,
 animals = {'cow', 'coelho'}}))
print(json.encode(json.into_array()))
print(json.encode('hey "pretty"'))

will output:

null
{"what":null,"hello":"world","animals":["cow","coelho"]}
[]
"hey \"pretty\""

If value (or any nested element) has a __tojson() metamethod, it’ll be used to serialize that nesting
level. Check __tojson() below to see parameters documentation.

opts is an options table that might contain the following fields:

• indent: the indentation string (or nil if a compact ugly JSON is desired).

• state: the state object passed in the __tojson() call. Useful to serialize further subobjects from
the metamethod site. This option overrides other options in the opts table.

If called with state, encode() will NOT return the generated string as it expects
to write a partial value using state.writer only.

is_array(json: value) → boolean

Test if json is a lua table and it has been tagged using the json.into_array() function to indicate that
it represents a JSON array.

json | 213

Example

local raw_json = [[["test", 4, false]]]

function poor_print(value)
 if json.is_array(value) then
 print(unpack(value))
 elseif type(value) == 'table' then
 print('{')
 for k, v in pairs(value) do
 print('', '"' .. k .. '"', v)
 end
 print('}')
 elseif type(value) == 'string' then
 print('"' .. value .. '"')
 else
 print(value)
 end
end

poor_print(json.decode(raw_json))

into_array([json: table]) → table

Change json's metatable to a certain tag that indicates either:

• The associated table was created from the result of parsing a JSON array.

• If this table is used to generate JSON textual representation, it should be encoded as a JSON
array.

json is returned from this function to favour certain useful syntactic idioms.

If called with no arguments, a new array is created and returned.

Use json.is_array() to check if some value has been marked using this function.

Customization point metamethods

__tojson(self, state)

Called to write current node in the JSON tree.

state is a table with the following fields:

• writer: the generator.

• visited: a table to detect reference cycles. Before serializing a suboject, check whether visited
already contains the to-be-serialized table. If a cycle is detected, raise cycle_exists error. If all is
good, set visited[t] = true before calling getmetatable(t).__tojson(t, state) on the subobject
t.

json | 214

• indent: the indentation string (or nil if a compact ugly JSON is desired). Current level of nested
containers can be queried through writer, so you should write this string as many times as this
reported level.

A trick to avoid the error-prone interactions involving state (e.g. updating visited, etc) to serialize
subobjects is to call json.encode(t, { state = state }) on the subobject t. This way, you move the
responsibility away to the json module itself. Example:

-- NOTE: this example ignores `indent`
mt = {
 __tojson = function(o, state)
 local writer = state.writer

 writer:begin_object()
 writer:value('foo')
 writer:value(o.foo) --< a number
 writer:value('bar')

 -- a subobject
 -- might contain its own `__tojson()`
 json.encode(o.bar, { state = state })

 writer:end_object()
 end
}

Conversion table

Lua type JSON type Notes

json.null null

boolean boolean

number number

string string

json | 215

Lua type JSON type Notes

table array On decode(raw_json):

• The lua table is marked
with the json.into_array()
function.

On encode(lua_obj):

• lua_obj is encoded as a
JSON array if it has been
marked as so using
json.into_array() or
#lua_obj evaluates to a
value larger than 0.

• Non-integer keys are
ignored.

table object On encode(lua_obj):

• Non-string keys are ignored.

Rationale
These choices are also used by other lua libraries in the wild.

David Heiko Kolf's work on collecting and comparing JSON libraries for Lua, and generally
documenting common pitfalls as well, was specially helpful. Thanks to his work it was much easier
for me to design my own solution.

null

Encoding the JSON null value is a problem. Lua treats nil as indistinguishable from an absent value
so we can’t really map null to nil. This problem only gets worse when interactions with sparse
tables begin. However, JavaScript uses a different value for absent, undefined. And the same
solution is chosen here with the introduction of a json.null value.

JSON arrays

JSON arrays and JSON objects will map to the same type — lua tables. How do we differentiate
them? This problem isn’t exclusive to Lua. JavaScript itself suffers from this problem:

> typeof({})
'object'
> typeof([])
'object'

The solution chosen by JavaScript is an Array.isArray() function:

json | 216

http://dkolf.de/

> Array.isArray({})
false
> Array.isArray([])
true

Therefore the same solution is chosen here:

local value = json.decode(raw_json)
if json.is_array(value) then
 -- ...
end

And json.into_aray() is introduced to make certain patterns easier to work with (especially for the
encode() function).

I acknowledge that dkjson’s __jsontype metafield is more general, but JSON doesn’t
really need this kind of generality. JSON is a closed world.

encode()

The following libraries and pages inspired this function:

• Section “value type mappings” from lua-rapidjson homepage.

• Section “handling of empty arrays” from lua-users wiki’s JSON Modules page.

• Section “examples” from dkjson homepage.

The decode() function avoids a recursive implementation. However, the encode() function does not
share the same property. The reason why no effort was made to offer a recursion-free encode()
implementation is the __tojson() metamethod. This metamethod would force an unbounded call-
stack anyway, so there is no point. However, the recursion was implemented in lua bytecode, so at
least your process shouldn’t crash on stack overflow. If you wish for a recursion-free
implementation, you can use the generator interface directly and avoid __tojson() yourself.

json | 217

https://github.com/xpol/lua-rapidjson#value-type-mappings
http://lua-users.org/wiki/JsonModules
http://dkolf.de/src/dkjson-lua.fsl/home

json.writer
The JSON incremental generator. It keeps track of the context and inserts the appropriate
separators between values where needed.

Functions

new() → json.writer

The constructor.

value(self, v)

Write formatted leaf value v into the JSON output.

v can be one of the following types:

• boolean

• number

• string

• json.null

begin_object(self)

Write the begin-object token to initiate an object into the JSON output.

end_object(self)

Write the end-object token to terminate an object into the JSON output.

begin_array(self)

Write the begin-array token to initiate an array into the JSON output.

end_array(self)

Write the end-array token to terminate an array into the JSON output.

literal(self, raw: string)

Write a literal value directly into the JSON output without formatting it.

generate(self) → string

Returns the generated JSON and consumes self. After this call, self can no longer be used.

Attributes

json.writer | 218

level: integer

The current level of nested containers.

json.writer | 219

mutex

local mutex = require('mutex')

local function ping_sender()
 sleep(30)
 scope(function()
 scope_cleanup_push(function() ws_write_mtx:unlock() end)
 ws_write_mtx:lock()
 ws:ping()
 end)
end

local function queue_consumer()
 scope(function()
 scope_cleanup_push(function() queue_mtx:unlock() end)
 queue_mtx:lock()
 while #queue == 0 do
 queue_cond:wait(queue_mtx)
 end
 for _, e in ipairs(queue) do
 consume_item(e)
 end
 queue = {}
 end)
end

A mutex.

Functions

new() → mutex

Constructor.

lock(self)

Locks the mutex.

 This suspending function does not act as an interruption point.

This mutex applies dispatch semantics. That means no context switch to other
ready fibers will take place if it’s possible to acquire the mutex immediately.

try_lock(self) → boolean

Tries to lock the mutex. Returns whether lock acquisition was successful.

mutex | 220

It’s an error to call try_lock() if current fiber already owns the mutex (cf.
recursive_mutex(3em) for an alternative).

 The current fiber is never suspended.

unlock(self)

Unlocks the mutex.

mutex | 221

recursive_mutex
A recursive mutex.

A fiber that already has exclusive ownership of a given recursive_mutex instance can call lock() or
try_lock() to acquire an additional level of ownership of the mutex. unlock() must be called once
for each level of ownership acquired by a single fiber before ownership can be acquired by another
fiber.

Functions

new() → recursive_mutex

Constructor.

lock(self)

Locks the mutex.

 This suspending function does not act as an interruption point.

This mutex applies dispatch semantics. That means no context switch to other
ready fibers will take place if it’s possible to acquire the mutex immediately.

try_lock(self) → boolean

Tries to lock the mutex. Returns whether lock acquisition was successful.

 The current fiber is never suspended.

unlock(self)

Unlocks the mutex.

recursive_mutex | 222

future
Futures and promises.

This implementation follows the model of shared futures. Thus multiple waiters on
the same future are allowed.

Functions

new() → promise, future

Constructor.

Creates a promise and its associated future and returns them.

future functions

get(self) → value

If result is available, returns result. Otherwise, blocks current fiber until result is ready and returns
it.

promise functions

set_value(self, v)

Atomically stores the value into the shared state and makes the state ready.

set_error(self, e)

Atomically stores the exception e into the shared state and makes the state ready.

future | 223

pipe.read_stream

Functions

new() → pipe.read_stream

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into a pipe end.

close(self)

Close the pipe.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous read operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the pipe.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous read operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native pipe to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous read operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native pipe
is then transferred to the caller.

pipe.read_stream | 224

https://www.boost.org/doc/libs/1_79_0/doc/html/boost_asio/reference/basic_readable_pipe/close/overload2.html
https://www.boost.org/doc/libs/1_79_0/doc/html/boost_asio/reference/basic_readable_pipe/cancel/overload2.html
https://www.boost.org/doc/libs/1_80_0/doc/html/boost_asio/reference/basic_readable_pipe/release/overload2.html

read_some(self, buffer: byte_span) → integer

Read data from the pipe and blocks current fiber until it completes or errs.

Returns the number of bytes read.

Properties

is_open: boolean

Whether the pipe is open.

pipe.read_stream | 225

pipe.write_stream

Functions

new() → pipe.write_stream

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into a pipe end.

close(self)

Close the pipe.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the pipe.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous write operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native pipe to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous write operations to finish
immediately, and the handlers for cancelled operations will be passed the
boost::asio::error::operation_aborted error. Ownership of the native pipe
is then transferred to the caller.

pipe.write_stream | 226

https://www.boost.org/doc/libs/1_79_0/doc/html/boost_asio/reference/basic_writable_pipe/close/overload2.html
https://www.boost.org/doc/libs/1_79_0/doc/html/boost_asio/reference/basic_writable_pipe/cancel/overload2.html
https://www.boost.org/doc/libs/1_80_0/doc/html/boost_asio/reference/basic_writable_pipe/release/overload2.html

write_some(self, buffer: byte_span) → integer

Write data to the pipe and blocks current fiber until it completes or errs.

Returns the number of bytes written.

Properties

is_open: boolean

Whether the pipe is open.

pipe.write_stream | 227

pipe.pair

Synopsis

local pipe = require "pipe"
pipe.pair() -> pipe.read_stream, pipe.write_stream

Description
Creates a pipe.

pipe.pair | 228

regex

Types

regex

Functions

new(options: table) → regex

Constructor.

options

pattern: string

The pattern to match against.

grammar

The grammar.

Currently it has support for:

• "basic".

• "extended".

• "ecma".

ignore_case: boolean = false

Whether to ignore casing.

nosubs: boolean = false

When performing matches, all marked sub-expressions are treated as non-marking sub-
expressions.

optimize: boolean = false

Whether to optimize the regex.

Functions

match(re: regex, str: string|byte_span) → matches…

Try to match the pattern against the whole string str. If successful, then returns the captures from
the pattern; otherwise it returns nil. If re specifies no captures, then the whole match is returned.

search(re: regex, str: string|byte_span) → table

Scan through str looking for the first location where the regular expression pattern produces a
match, and return a corresponding match object. The returned table contains the following string
keys:

regex | 229

"empty": boolean

Whether match was unsuccessful.

The table also contains numeric keys from 0 to the number of specified capture groups. 0 will
represent the whole match and subsequent indexes are present if a corresponding match for that
capturing group was found. Each element will be a table with the following members:

"start": integer

The index for the first character that matched.

"end_": integer`

The index for the last character that matched.

split(re: regex, str: string|byte_span) → string[]|byte_span[]

Split str by the occurrences of re.

patsplit(re: regex, str: string|byte_span) → string[]|byte_span[]

Returns occurrences of re in str.

regex | 230

serial_port

local port = serial_port.new()
port:open(name)

Functions

new() → serial_port

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into a serial_port object.

ptypair() → serial_port, file_descriptor

Open a pair of connected pseudoterminal devices. Returns the master and the slave ends,
respectively.

The flag O_NOCTTY will be used to open the slave end so it doesn’t accidentally
become the controlling terminal for the session of the calling process.

 Use the returned file_descriptor object in system.spawn()'s set_ctty.

open(self, device: string)

Open the serial port using the specified device name.

device is something like "COM1" on Windows, and "/dev/ttyS0" on POSIX platforms.

close(self)

Close the port.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous read or write operations will be cancelled immediately,
and will complete with the boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

serial_port | 231

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_serial_port/close/overload2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_serial_port/cancel/overload2.html

This function causes all outstanding asynchronous read or write operations
to finish immediately, and the handlers for cancelled operations will be
passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native port to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

send_break(self)

Send a break sequence to the serial port.

This function causes a break sequence of platform-specific duration to be sent out the serial port.

read_some(self, buffer: byte_span) → integer

Read data from the port and blocks current fiber until it completes or errs.

Returns the number of bytes read.

write_some(self, buffer: byte_span) → integer

Write data to the port and blocks current fiber until it completes or errs.

Returns the number of bytes written.

isatty(self) → boolean

See isatty(3).

tcgetpgrp(self) → integer

See tcgetpgrp(3).

tcsetpgrp(self, pgid_id: integer)

See tcsetpgrp(3).

Properties

is_open: boolean

Whether the port is open.

baud_rate: integer

Read or write current baud rate setting.

serial_port | 232

flow_control: "software"|"hardware"|nil

Read or write current flow control setting.

parity: "odd"|"even"|nil

Read or write current parity setting.

stop_bits: string

Read or write current stop bit width setting.

It can be one of:

• "one".

• "one_point_five".

• "two".

character_size: integer

Read or write current character size setting.

serial_port | 233

time.sleep

Synopsis

local time = require "time"
time.sleep(secs: number)

Description
Blocks the fiber until secs seconds have passed.

 Floating point numbers give room for subsecond precision.

time.sleep | 234

time.steady_clock

local clock = require('time').steady_clock
local timepoint = clock.now()

A monotonic clock (i.e. its time points cannot decrease as physical time moves forward).

Functions

now() → steady_clock.time_point

Returns a new time point representing the current value of the clock.

epoch() → steady_clock.time_point

Returns a new time point representing the epoch of the clock.

time_point functions

add(self, secs: number)

Modifies the time point by the given duration.

When the duration is converted to the native tick representation of the clock, it’ll
be rounded to the nearest time point rounding to even in halfway cases.

sub(self, secs: number)

Modifies the time point by the given duration.

When the duration is converted to the native tick representation of the clock, it’ll
be rounded to the nearest time point rounding to even in halfway cases.

time_point properties

seconds_since_epoch: number

The number of elapsed seconds since the clock’s epoch.

time_point metamethods
• __add()

• __sub()

• __eq()

time.steady_clock | 235

• __lt()

• __le()

time.steady_clock | 236

time.steady_timer

local timer = require('time').steady_timer
local t = timer.new()

spawn(function() print('Hello') end)

t:expires_after(2) --< 2 seconds
t:wait()
print('World')

A monotonic timer (i.e. the time points of the underlying clock cannot decrease as physical time
moves forward). As in Boost.Asio:

A waitable timer is always in one of two states: "expired" or "not expired". If
the wait() or async_wait() function is called on an expired timer, the wait
operation will complete immediately.

Changing an active waitable timer’s expiry time

Changing the expiry time of a timer while there are pending asynchronous
waits causes those wait operations to be cancelled.

Functions

new() → steady_timer

local t = steady_timer.new()

Constructor. Returns a new steady_timer object.

expires_at(self, tp: time.steady_clock.time_point) → integer

Forward the call to the function with same name in Boost.Asio:

Set the timer’s expiry time as an absolute time. Any pending asynchronous
wait operations will be cancelled. The handler for each cancelled operation
will be invoked with the boost::asio::error::operation_aborted error code.

Return Value

The number of asynchronous operations that were cancelled.

time.steady_timer | 237

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/steady_timer.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/basic_waitable_timer/expires_at.html

expires_after(self, secs: number) → integer

Forward the call to the function with same name in Boost.Asio:

Set the timer’s expiry time relative to now. Any pending asynchronous wait
operations will be cancelled. The handler for each cancelled operation will
be invoked with the boost::asio::error::operation_aborted error code.

Return Value

The number of asynchronous operations that were cancelled.

Expiry time is given in seconds.

wait(self)

Initiate a wait operation on the timer and blocks current fiber until one of the events occur:

• The timer has expired.

• The timer was cancelled, in which case it raises boost::asio::error::operation_aborted.

cancel(self) → integer

Cancel any operations that are waiting on the timer. Returns the number of asynchronous
operations that were cancelled.

Properties

expiry: time.steady_clock.time_point

The timer’s expiry time as an absolute time.

Whether the timer has expired or not does not affect this value.

time.steady_timer | 238

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/basic_waitable_timer/expires_after.html

time.system_clock

local clock = require('time').system_clock
local timepoint = clock.now()

The system-wide real time wall clock. It uses the UNIX epoch.

 On most systems, the system time can be adjusted at any moment.

Functions

now() → system_clock.time_point

Returns a new time point representing the current value of the clock.

epoch() → system_clock.time_point

Returns a new time point representing the epoch of the clock.

time_point functions

add(self, secs: number)

Modifies the time point by the given duration.

When the duration is converted to the native tick representation of the clock, it’ll
be rounded to the nearest time point rounding to even in halfway cases.

sub(self, secs: number)

Modifies the time point by the given duration.

When the duration is converted to the native tick representation of the clock, it’ll
be rounded to the nearest time point rounding to even in halfway cases.

time_point properties

seconds_since_epoch: number

The number of elapsed seconds since 1 January 1970, not counting leap seconds.

time_point metamethods
• __add()

• __sub()

time.system_clock | 239

• __eq()

• __lt()

• __le()

time.system_clock | 240

time.system_timer

local timer = require('time').system_timer
local t = timer.new()

A timer for the system_clock. As in Boost.Asio:

A waitable timer is always in one of two states: "expired" or "not expired". If
the wait() or async_wait() function is called on an expired timer, the wait
operation will complete immediately.

Changing an active waitable timer’s expiry time

Changing the expiry time of a timer while there are pending asynchronous
waits causes those wait operations to be cancelled.

Functions

new() → system_timer

local t = system_timer.new()

Constructor. Returns a new system_timer object.

expires_at(self, tp: time.system_clock.time_point) → integer

Forward the call to the function with same name in Boost.Asio:

Set the timer’s expiry time as an absolute time. Any pending asynchronous
wait operations will be cancelled. The handler for each cancelled operation
will be invoked with the boost::asio::error::operation_aborted error code.

Return Value

The number of asynchronous operations that were cancelled.

wait(self)

Initiate a wait operation on the timer and blocks current fiber until one of the events occur:

• The timer has expired.

• The timer was cancelled, in which case it raises boost::asio::error::operation_aborted.

time.system_timer | 241

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/system_timer.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/basic_waitable_timer/expires_at.html

cancel(self) → integer

Cancel any operations that are waiting on the timer. Returns the number of asynchronous
operations that were cancelled.

Properties

expiry: time.system_clock.time_point

The timer’s expiry time as an absolute time.

Whether the timer has expired or not does not affect this value.

time.system_timer | 242

time.high_resolution_clock

local clock = require('time').high_resolution_clock
local timepoint = clock.now()

The clock with the smallest tick period provided by the system.

 This clock is useful for microbenchmarking purposes.

Functions

now() → high_resolution_clock.time_point

Returns a new time point representing the current value of the clock.

epoch() → high_resolution_clock.time_point

Returns a new time point representing the epoch of the clock.

Attributes

is_steady: boolean

Whether the time between ticks is always constant (i.e. calls to now() return values that increase
monotonically even in case of some external clock adjustment).

time_point properties

seconds_since_epoch: number

The number of elapsed seconds since the clock’s epoch.

time_point metamethods
• __sub()

• __eq()

• __lt()

• __le()

time.high_resolution_clock | 243

spawn

Synopsis

spawn(f: function) -> fiber

Description
Spawns a new fiber to run f. Post semantics are used, so the current fiber (the one calling spawn())
continues to run until it reaches a suspension point.

Fibers are the primitive of choice to represent concurrency. Every time you need to increase the
concurrency level, just spawn a fiber. Fibers are cooperative and only transfer control to other
fibers in well-defined points (sync primitives, IO functions and any suspending function such as
this_fiber.yield()). These points are also used by the interruption API.

No two fibers from the same Lua VM run in parallel (even when the underlying VM’s thread pool
has threads available).

 spawn() is a global so it doesn’t need to be require()d.

fiber functions

join(self)

Read pthread_join().

Returns the values returned by the fiber’s start function. If that fiber exits with an error, that error
is re-raised here (and fiber is considered joined).

detach(self)

Read pthread_detach().

If the GC collects the fiber handle, it’ll be detached.

interrupt(self)

Read pthread_cancel().

fiber properties

interruption_caught: boolean

Read PTHREAD_CANCELED.

spawn | 244

https://en.wikipedia.org/wiki/Cooperative_multitasking

joinable: boolean

Whether joinable.

spawn | 245

this_fiber
Object referring to current fiber.

 this_fiber is a global so it doesn’t need to be require()d.

Functions

yield()

Reschedule current fiber to be executed in the next round so other ready fibers have a chance to
run now. You usually don’t need to call this function as any suspending function already do that.

{forbid,allow}_suspend()

forbid_suspend()
allow_suspend()

A call to forbid_suspend() will put the fiber in the state of suspension-disallowed and any attempt to
suspend the fiber while it is in this state will raise an error.

forbid_suspend() may be called multiple times. A matching number of calls to allow_suspend() will
put the fiber out of the suspension-disallowed state. You must not call allow_suspend() if there was
no prior call to forbid_suspend().

These functions aren’t generally useful and they would have no purpose in preemptive
multitasking. However a cooperative multitasking environment offers opportunities to avoid some
round-trips to sync primitives. These opportunities shouldn’t really be used and the programmer
should just rely on the classical sync primitives. However I can’t tame every wild programmer out
there so there is this mechanism to at least document the code in mechanisms similar to assert()
statements from native languages.

They’re only useful if there are comprehensive test cases. Still, the use of these functions may make
the code more readable. And some tools may be developed to understand these blocks and do some
simple static analysis.

this_fiber.{disable,restore}_interruption()

disable_interruption()
restore_interruption()

Check the interruption tutorial to see what it does.

Properties

this_fiber | 246

is_main: boolean

Whether this is the main fiber of the program.

local_: table

Fiber-local storage.

id: string

An id string for debugging purposes.

Use it only for debugging purposes. Do not exploit this value to create messy work-
arounds. There is no need to use it beyond anything other than debugging
purposes.

this_fiber | 247

inbox

Synopsis

local inbox = require "inbox"

Description
Returns the inbox associated with the caller VM.

Methods

receive(self) → value

Receives a message.

close(self)

Closes the channel. No further messages can be received after inbox is closed.

If inbox is not imported by the time the main fiber finishes execution, it’s
automatically closed.

inbox | 248

spawn_vm

Synopsis

spawn_vm(module: string) -> channel
spawn_vm(opts: table) -> channel

Description
Creates a new actor and returns a tx-channel.

The new actor will execute with _CONTEXT='worker' (this _CONTEXT is not propagated to imported
submodules within the actor).

Threading with work-stealing

Spawn more VMs than threads and spawn them all in the same thread-pool. The
system will transparently steal VMs from the shared pool to keep the work-queue
somewhat fair between the threads.

Threading with load-balancing

Spawn each VM in a new thread pool and make sure each-one has only one thread.
Now use messaging to apply some load-balancing strategy of your choice.

Parameters

module: string

The module that will serve as the entry point for the new actor.

For IPC-based actors, this argument no longer means an actual module when
Linux namespaces are involved. It’ll just be passed along to the new process.

 '.' is also a valid module to use when you spawn actors.

inherit_context: boolean = true

Whether to inherit the thread pool of the parent VM (i.e. the one calling spawn_vm()). On false, a
new thread pool (starting with 1 thread) is created to run the new actor.

Emilua can handle multiple VMs running on the same thread just fine. Cooperative multitasking
is used to alternate execution among the ready VMs.

A thread pool is one type of an execution context. The API prefers the term
“context” as it’s more general than “thread pool”.

spawn_vm | 249

concurrency_hint: integer|"safe" = "safe"

integer

A suggestion to the new thread pool (inherit_context should be false) as to the number of
active threads that should be used for scheduling actors[1].

 You still need to call spawn_context_threads() to create the extra threads.

"safe"

The default. No assumption is made upfront on the number of active threads that will be
created through spawn_context_threads().

new_master: boolean = false

The first VM (actor) to run in a process has different responsibilities as that’s the VM that will
spawn all other actors in the system. The Emilua runtime will restrict modification of global
process resources that don’t play nice with threads such as the current working directory and
signal handling disposition to this VM.

Upon spawning a new actor, it’s possible to transfer ownership over these resources to the new
VM. After spawn_vm() returns, the calling actor ceases to be the master VM in the process and can
no longer recover its previous role as the master VM.

subprocess: table|nil

table

Spawn the actor in a new subprocess.

 Not available on Windows.

nil

Default. Don’t spawn the actor in a new subprocess.

subprocess.newns_uts: boolean = false

Whether to create the process within a new Linux UTS namespace.

subprocess.newns_ipc: boolean = false

Whether to create the process within a new Linux IPC namespace.

subprocess.newns_pid: boolean = false

Whether to create the process within a new Linux PID namespace.

The first process in a PID namespace is PID1 within that namespace. PID1 has a few special
responsibilities. After subprocess.init.script exits, the Emilua runtime will fork if it’s running
as PID1. This new child will assume the role of starting your module (the Lua VM). The PID1
process will perform the following jobs:

• Forward SIGTERM, SIGUSR1, SIGUSR2, SIGHUP, and SIGINT to the child. There is no point in re-
routing every signal, but more may be added to this set if you present a compelling case.

• Reap zombie processes.

spawn_vm | 250

• Exit when the child dies with the same exit code as the child’s.

subprocess.newns_user: boolean = false

Whether to create the process within a new Linux user namespace.

subprocess.newns_net: boolean = false

Whether to create the process within a new Linux net namespace.

subprocess.newns_mount: boolean = false

Whether to create the process within a new Linux mount namespace.

subprocess.environment: { [string] = string }|nil

A table of strings that will be used as the created process' envp. On nil, an empty envp will be
used.

subprocess.stdin,stdout,stderr: "share"|file_descriptor|nil

"share"

The spawned process will share the specified standard handle (stdin, stdout, or stderr) with
the caller process.

file_descriptor

Use the file descriptor as the specified standard handle (stdin, stdout, or stderr) for the
spawned process.

nil

Create and use a closed pipe end as the specified standard handle (stdin, stdout, or stderr) for
the spawned process.

subprocess.init.script: string

The source code for a script that is used to initialize the sandbox in the child process.

See also:

• init.script(3em)

subprocess.init.arg: file_descriptor|nil

A file descriptor that will be sent to the init.script. The script can access this fd through the
variable arg that is available within the script.

channel functions

send(self, msg)

Sends a message.

You can send the address of other actors (or self) by sending the channel as a
message. A clone of the tx-channel will be made and sent over.

spawn_vm | 251

This simple foundation is enough to:

[…] gives Actors the ability to create and participate in
arbitrarily variable topological relationships with one another
[…]

— https://en.wikipedia.org/wiki/Actor_model

close(self)

Closes the channel. No further messages can be sent after a channel is closed.

detach(self)

Detaches the calling VM/actor from the role of supervisor for the process/actor represented by self.
After this operation is done, the process/actor represented by self is allowed to outlive the calling
process.

 The channel remains open.

This method is only available for channels associated with IPC-based actors that
are direct children of the caller.

kill(self, signo: integer = system.signal.SIGKILL)

Sends signo to the subprocess. On SIGKILL, it’ll also close the channel.

This method is only available for channels associated with IPC-based actors that
are direct children of the caller.

A PID file descriptor is used to send signo so no races involving PID numbers ever
happen.

channel properties

child_pid: integer

The process id used by the OS to represent this child process (e.g. the number that shows up in
/proc on some UNIX systems).

Do keep in mind that process reaping happens automatically and the PID won’t remain reserved
once the child dies, so it’s racy to use the PID. Even if process reaping was not automatic, it’d still be
possible to have races if the parent died while some other process was using this PID. Use child_pid
only as a last resort.

You can only access this field for channels associated with IPC-based actors that
are direct children of the caller.

spawn_vm | 252

https://en.wikipedia.org/wiki/Actor_model

[1] https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/overview/core/concurrency_hint.html

spawn_vm | 253

https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio/overview/core/concurrency_hint.html

init.script

Synopsis

spawn_vm{ subprocess = { init = { script = init.script } } }

Description
The C API exposed to init.script.

arg: integer|nil
The file descriptor passed (if any) at the time the call to spawn_vm() was made as the parameter
subprocess.init.arg.

errexit: boolean = true
We don’t want to accidentally ignore errors from the C API exposed to the init.script. That’s why
we borrow an idea from BASH. One common folklore among BASH programmers is the unofficial
strict mode. Among other things, this mode dictates the use of BASH’s set -o errexit.

And errexit exists for the init.script as well. For init.script, errexit is just a global boolean.
Every time the C API fails, the Emilua wrapper for the function will check its value. On errexit=true
(the default when the script starts), the process will abort whenever some C API fails. That’s
specially important when you’re using the API to drop process credentials/rights.

The controlling terminal
The Emilua runtime won’t call setsid() nor setpgid() by itself, so the process will stay in the same
session as its parent, and it’ll have access to the same controlling terminal.

If you want to block the new actor from accessing the controlling terminal, you may perform the
usual calls in init.script:

C.setsid()

Helpers

mode(user: integer, group: integer, other: integer) → integer

function mode(user, group, other)
 return bit.bor(bit.lshift(user, 6), bit.lshift(group, 3), other)
end

init.script | 254

write_all(fd: integer, buffer: string) → integer, integer

Similar to stream.write_all().

receive_with_fd(fd: integer, buf_size: integer) → string, integer, integer

Returns three values:

1. String with the received message (or nil on error).

2. File descriptor received (or -1 on none).

3. The errno value (or 0 on success).

send_with_fd(fd: integer, str: buffer, fd2: integer) → integer, integer

Returns two values:

1. sendmsg() return.

2. The errno value (or 0 on success).

set_no_new_privs()

Set the calling thread’s no_new_privs attribute to true.

Functions
These functions live inside the global table C. errno (or 0 on success) is returned as the second result.

• read(). Opposed to the C function, it receives two arguments. The second argument is the size of
the buffer. The buffer is allocated automatically, and returned as a string in the first result
(unless an error happens, then nil is returned).

• write(). Opposed to the C function, it receives two arguments. The second one is a string which
will be used as the buffer.

• sethostname(). Opposed to the C function, it only receives the string argument.

• setdomainname(). Opposed to the C function, it only receives the string argument.

• setgroups(). Opposed to the C function, it receives a list of numbers as its single argument.

• cap_set_proc(). Opposed to the C function, it receives a string as its single argument. The string
is converted to the cap_t type using the function cap_from_text().

• cap_drop_bound(). Opposed to the C function, it receives a string as its single argument. The
string is converted to the cap_value_t type using the function cap_from_name().

• cap_set_ambient(). Opposed to the C function, it receives a string as its first argument. The string
is converted to the cap_value_t type using the function cap_from_name(). The second parameter is
a boolean.

• execve(). Opposed to the C function, argv and envp are specified as a Lua table.

• fexecve(). Opposed to the C function, argv and envp are specified as a Lua table.

init.script | 255

Other exported functions work as usual (except that errno or 0 is returned as the second result):

• open().

• mkdir().

• chdir().

• mkfifo().

• mknod().

• makedev().

• link().

• symlink().

• chown().

• chmod().

• umask().

• mount().

• umount().

• umount2().

• unmount().

• pivot_root().

• chroot().

• setsid().

• setpgid().

• setresuid().

• setresgid().

• cap_reset_ambient().

• cap_set_secbits().

• unshare().

• setns().

• cap_enter().

• jail_attach().

Constants
These constants live inside the global table C.

errno values:

• EAFNOSUPPORT.

• EADDRINUSE.

init.script | 256

• EADDRNOTAVAIL.

• EISCONN.

• E2BIG.

• EDOM.

• EFAULT.

• EBADF.

• EBADMSG.

• EPIPE.

• ECONNABORTED.

• EALREADY.

• ECONNREFUSED.

• ECONNRESET.

• EXDEV.

• EDESTADDRREQ.

• EBUSY.

• ENOTEMPTY.

• ENOEXEC.

• EEXIST.

• EFBIG.

• ENAMETOOLONG.

• ENOSYS.

• EHOSTUNREACH.

• EIDRM.

• EILSEQ.

• ENOTTY.

• EINTR.

• EINVAL.

• ESPIPE.

• EIO.

• EISDIR.

• EMSGSIZE.

• ENETDOWN.

• ENETRESET.

• ENETUNREACH.

• ENOBUFS.

init.script | 257

• ECHILD.

• ENOLINK.

• ENOLCK.

• ENOMSG.

• ENOPROTOOPT.

• ENOSPC.

• ENXIO.

• ENODEV.

• ENOENT.

• ESRCH.

• ENOTDIR.

• ENOTSOCK.

• ENOTCONN.

• ENOMEM.

• ENOTSUP.

• ECANCELED.

• EINPROGRESS.

• EPERM.

• EOPNOTSUPP.

• EWOULDBLOCK.

• EOWNERDEAD.

• EACCES.

• EPROTO.

• EPROTONOSUPPORT.

• EROFS.

• EDEADLK.

• EAGAIN.

• ERANGE.

• ENOTRECOVERABLE.

• ETXTBSY.

• ETIMEDOUT.

• ENFILE.

• EMFILE.

• EMLINK.

• ELOOP.

init.script | 258

• EOVERFLOW.

• EPROTOTYPE.

open() flags:

• O_CLOEXEC.

• O_CREAT.

• O_RDONLY.

• O_WRONLY.

• O_RDWR.

• O_EXEC.

• O_SEARCH.

• O_DIRECTORY.

• O_EXCL.

• O_NOCTTY.

• O_NOFOLLOW.

• O_TMPFILE.

• O_TRUNC.

• O_APPEND.

• O_ASYNC.

• O_DIRECT.

• O_DSYNC.

• O_LARGEFILE.

• O_NOATIME.

• O_NONBLOCK.

• O_RESOLVE_BENEATH.

• O_PATH.

• O_EMPTY_PATH.

• O_SYNC.

Mode bits for access permission:

• S_IRWXU.

• S_IRUSR.

• S_IWUSR.

• S_IXUSR.

• S_IRWXG.

init.script | 259

• S_IRGRP.

• S_IWGRP.

• S_IXGRP.

• S_IRWXO.

• S_IROTH.

• S_IWOTH.

• S_IXOTH.

• S_ISUID.

• S_ISGID.

• S_ISVTX.

openat() flags:

• AT_FDCWD.

• AT_EMPTY_PATH.

• AT_SYMLINK_NOFOLLOW.

mknod() flags:

• S_IFCHR.

• S_IFBLK.

mount() flags:

• MS_REMOUNT.

• MS_BIND.

• MS_SHARED.

• MS_PRIVATE.

• MS_SLAVE.

• MS_UNBINDABLE.

• MS_MOVE.

• MS_DIRSYNC.

• MS_LAZYTIME.

• MS_MANDLOCK.

• MS_NOATIME.

• MS_NODEV.

• MS_NODIRATIME.

• MS_NOEXEC.

• MS_NOSUID.

init.script | 260

• MS_RDONLY.

• MS_REC.

• MS_RELATIME.

• MS_SILENT.

• MS_STRICTATIME.

• MS_SYNCHRONOUS.

• MS_NOSYMFOLLOW.

• MNT_FORCE.

• MNT_DETACH.

• MNT_EXPIRE.

• MNT_RDONLY.

• MNT_NOEXEC.

• MNT_NOSUID.

• MNT_NOATIME.

• MNT_SNAPSHOT.

• MNT_SUIDDIR.

• MNT_SYNCHRONOUS.

• MNT_ASYNC.

• MNT_NOCLUSTERR.

• MNT_NOCLUSTERW.

• MNT_NOCOVER.

• MNT_EMPTYDIR.

• MNT_UPDATE.

• MNT_RELOAD.

• MNT_BYFSID.

• UMOUNT_NOFOLLOW.

mount_setattr() flags:

• AT_RECURSIVE.

• AT_NO_AUTOMOUNT.

• MOUNT_ATTR_RDONLY.

• MOUNT_ATTR_NOSUID.

• MOUNT_ATTR_NODEV.

• MOUNT_ATTR_NOEXEC.

• MOUNT_ATTR_NOSYMFOLLOW.

init.script | 261

• MOUNT_ATTR_NODIRATIME.

• MOUNT_ATTR__ATIME.

• MOUNT_ATTR_RELATIME.

• MOUNT_ATTR_NOATIME.

• MOUNT_ATTR_STRICTATIME.

• MOUNT_ATTR_IDMAP.

unshare() flags:

• CLONE_NEWCGROUP.

• CLONE_NEWIPC.

• CLONE_NEWNET.

• CLONE_NEWNS.

• CLONE_NEWPID.

• CLONE_NEWTIME.

• CLONE_NEWUSER.

• CLONE_NEWUTS.

cap_set_secbits() flags:

• SECBIT_NOROOT.

• SECBIT_NOROOT_LOCKED.

• SECBIT_NO_SETUID_FIXUP.

• SECBIT_NO_SETUID_FIXUP_LOCKED.

• SECBIT_KEEP_CAPS.

• SECBIT_KEEP_CAPS_LOCKED.

• SECBIT_NO_CAP_AMBIENT_RAISE.

• SECBIT_NO_CAP_AMBIENT_RAISE_LOCKED.

C.mount_setattr(dirfd: integer, pathname: string|nil,
flags: integer, attr: { attr_set: integer, attr_clr:
integer, propagation: integer, userns_fd: integer })
Returns two values:

1. mount_setattr() return.

2. The errno value (or 0 on success).

init.script | 262

C.seccomp_set_mode_filter(bpf_fprogram: string) →
integer, integer
Set the secure computing (seccomp) mode for the calling process, to limit the available system calls.
It’s equivalent to:

const char* bpf_fprogram = ...;
size_t bpf_fprogram_size = ...;

struct sock_fprog prog;
prog.len = bpf_fprogram_size / sizeof(struct sock_filter);
prog.filter = (struct sock_filter*)(bpf_fprogram);
prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);

Use Kafel to generate the BPF bytecode. There’s an Emilua plugin for Kafel
integration.

C.landlock_create_ruleset(attr: table|nil, flags:
table|nil) → integer, integer
Parameters:

• attr.handled_access_fs: string[]

◦ "execute"

◦ "write_file"

◦ "read_file"

◦ "read_dir"

◦ "remove_dir"

◦ "remove_file"

◦ "make_char"

◦ "make_dir"

◦ "make_reg"

◦ "make_sock"

◦ "make_fifo"

◦ "make_block"

◦ "make_sym"

◦ "refer"

◦ "truncate"

• flags: string[]

◦ "version"

init.script | 263

Returns two values:

1. landlock_create_ruleset() return.

2. The errno value (or 0 on success).

C.landlock_add_rule(ruleset_fd: integer, rule_type:
"path_beneath", attr: table) → integer, integer
Parameters:

• attr.allowed_access: string[]

◦ "execute"

◦ "write_file"

◦ "read_file"

◦ "read_dir"

◦ "remove_dir"

◦ "remove_file"

◦ "make_char"

◦ "make_dir"

◦ "make_reg"

◦ "make_sock"

◦ "make_fifo"

◦ "make_block"

◦ "make_sym"

◦ "refer"

◦ "truncate"

• attr.parent_fd: integer

Returns two values:

1. landlock_add_rule() return.

2. The errno value (or 0 on success).

C.landlock_restrict_self(ruleset_fd: integer) →
integer, integer
Returns two values:

1. landlock_restrict_self() return.

2. The errno value (or 0 on success).

init.script | 264

C.jail_set(params: { [string]: string|boolean }, flags:
string[]|nil) → integer, integer
Create or modify a jail. Optionally locks the current process in it.

Jail parameters are given as strings and they’ll be transparently converted to the native format
accepted by the kernel.

flags may contain the following values:

• "create"

• "update"

• "attach"

• "dying"

See jail(8) for more information on the core jail parameters.

See also
• spawn_vm(3em)

init.script | 265

spawn_context_threads

Synopsis

spawn_context_threads(count: integer)

Description
Spawns extra count threads to the thread pool of the caller VM.

Emilua can handle multiple VMs running on the same thread just fine. Cooperative
multitasking is used to alternate execution among the ready VMs.

It doesn’t make sense to have more context threads than actors as some threads
will always be idle in this scenario.

No safety-belts will prevent you from running such inefficient layout.

spawn_context_threads | 266

stream.write_all

Synopsis

local stream = require "stream"
stream.write_all(io_object, buffer: byte_span|string) -> integer

Description
Write all of the supplied data to the stream and blocks current fiber until it completes or errs.

Returns the buffer's size (number of bytes written).

As in Boost.Asio:

This operation is implemented in terms of zero or more calls to the stream’s
async_write_some function, and is known as a composed operation. The
program must ensure that the stream performs no other write operations
(such as async_write, the stream’s async_write_some function, or any other
composed operations that perform writes) until this operation completes.

stream.write_all | 267

https://www.boost.org/doc/libs/1_77_0/doc/html/boost_asio/reference/async_write/overload1.html

stream.write_at_least

Synopsis

local stream = require "stream"
stream.write_at_least(io_object, buffer: byte_span, minimum: integer) -> integer

Description
Write data until a minimum number of bytes has been transferred and blocks current fiber until it
completes or errs.

Returns the number of bytes written.

As in Boost.Asio:

This operation is implemented in terms of zero or more calls to the stream’s
async_write_some function, and is known as a composed operation. The
program must ensure that the stream performs no other write operations
(such as async_write, the stream’s async_write_some function, or any other
composed operations that perform writes) until this operation completes.

stream.write_at_least | 268

https://www.boost.org/doc/libs/1_77_0/doc/html/boost_asio/reference/async_write/overload1.html

stream.read_all

Synopsis

local stream = require "stream"
stream.read_all(io_object, buffer: byte_span) -> integer

Description
Read data until the supplied buffer is full and blocks current fiber until it completes or errs.

Returns the buffer's size (number of bytes read).

As in Boost.Asio:

This operation is implemented in terms of zero or more calls to the stream’s
async_read_some function, and is known as a composed operation. The
program must ensure that the stream performs no other read operations
(such as async_read, the stream’s async_read_some function, or any other
composed operations that perform reads) until this operation completes.

stream.read_all | 269

https://www.boost.org/doc/libs/1_77_0/doc/html/boost_asio/reference/async_read/overload1.html

stream.read_at_least

Synopsis

local stream = require "stream"
stream.read_at_least(io_object, buffer: byte_span, minimum: integer) -> integer

Description
Read data until a minimum number of bytes has been transferred and blocks current fiber until it
completes or errs.

Returns the number of bytes read.

As in Boost.Asio:

This operation is implemented in terms of zero or more calls to the stream’s
async_read_some function, and is known as a composed operation. The
program must ensure that the stream performs no other read operations
(such as async_read, the stream’s async_read_some function, or any other
composed operations that perform reads) until this operation completes.

stream.read_at_least | 270

https://www.boost.org/doc/libs/1_77_0/doc/html/boost_asio/reference/async_read/overload1.html

stream.scanner

local stream = require "stream"
local scanner = stream.scanner.new{ stream = system.in_ }
scanner:get_line()

This class abstracts formatted buffered textual input as an AWK-inspired scanner. The input stream
is broken into records, and each record may be further broken down into fields.

get_line() is used to get the next record. Surplus data read from the stream is kept in the buffer to
be used in the next call to get_line().

When EOF is found on the stream, the buffered data is returned as the last record. To differentiate
records finished on EOF from records finished on record_separator, check self.record_terminator.

You may change the parsing rules (e.g. record and field separators) once
get_line() returns.

Line-based protocols

Many commonly-used internet protocols are line-based, which means that
they have protocol elements that are delimited by the character sequence
"\r\n". Examples include HTTP, SMTP and FTP.

— https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/core/line_based.html

To easily parse these protocols, you may set a scanner object with record_separator="\r\n". Then,
get_line() will return a new line each time it is called. If the field separator/pattern is also
specified, the line will be broken into a table made of the fields.

New buffers will be allocated as more space is needed until a specified maximum (or an
unspecified maximum default).

Combining strategies
You may also use different parsers & algorithms to consume some parts of the stream. For instance,
HTTP starts as a line-delimited textual protocol. Once the header section is consumed, the body
payload is determined by rules extracted out of the headers. For "content-length" defined message
bodies, you read a fixed amount of bytes to consume it.

In such scenario, you may use scanner to parse the header section, and, once it’s time to read the
body, use the method buffer() to retrieve already buffered data. Just be sure to call remove_line()
before calling buffer() so the last line of the header section doesn’t get mixed up with the body.
Then it’ll be a matter of calling stream.read_all(3em) (or several calls to read_some()) to consume the
body.

stream.scanner | 271

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/overview/core/line_based.html

Once it’s time to parse the header section for the next message in the stream, you can call
set_buffer() to pass the buffered data back to the scanner.

Functions

new(opts: table|nil) → scanner

Set attributes required by scanner.mt, set opts's metatable to scanner.mt and returns opts. If opts is
nil, then a new table is returned.

You MUST set the stream attribute (before or after the call to new()) before using scanner's methods.

Optional attributes to opts:

record_separator: string|regex = "\n"

The pattern used to split records.

Regexes must be used with care on streaming content. For instance, if you set
record_separator to the regex /abc(XYZ)?/, it is possible that "XYZ" will not
match just because it wasn’t buffered yet even if it’ll appear in the next calls to
read() on the stream.

Other tools such as GAWK suffer from the same constraint. Some regexes
engines offer special support when working on streaming content, but they
don’t solve the whole problem as it’d be impossible to differentiate “max record
size reached” from “record_separator not found” if an attempt were made to
use this support.

field_separator: string|regex|function|nil

If non-nil, defines how to split fields. Otherwise, the whole line/record is returned as is.

Check regex.split() to understand how fields are separated. In short, field_separator defines
what fields are not.

On functions, the function is used to split the fields out of the line/record and its return is passed
through.

field_pattern: regex|nil

Defines what fields are (as opposed to field_separator that defines what fields are not). It must
be a regex. Check regex.patsplit() for details.

trim_record: boolean|string = false

Whether to strip linear whitespace (if string is given, then it’ll define the list of whitespace
characters) from the beginning and end of each record.

buffer_size_hint: integer|nil

The initial size for the buffer. As is the case for every hint, it might be ignored.

stream.scanner | 272

https://www.boost.org/doc/libs/1_78_0/libs/regex/doc/html/boost_regex/partial_matches.html
https://www.boost.org/doc/libs/1_78_0/libs/regex/doc/html/boost_regex/partial_matches.html

max_record_size: integer = unspecified

The maximum size for each record/buffer.

with_awk_defaults(read_stream) → scanner

Returns a scanner acting on stream that has the semantics from AWK defaults:

record_separator

"\n"

trim_record

true

field_separator

A regex that describes a sequence of linear whitespace.

get_line(self) → byte_span|byte_span[]

Reads next record buffering any bytes as required and returns it. If field_separator, or
field_pattern were set, the record’s extracted fields are returned.

It also sets self.record_terminator to the record separator just read. On end of streams that don’t
include the record separator, self.record_terminator will be set to an empty byte_span (or an empty
string if record separator was specified as a string).

It also increments self.record_number by one on success (it is initially zero).

buffered_line(self) → byte_span

Returns current buffered record without extracting its fields. It works like AWK’s $0 variable.

Precondition

A record must be present in the buffer from a previous call to get_line().

remove_line(self)

Removes current record from the buffer and sets self.record_terminator to nil.

Precondition

A record must be present in the buffer from a previous call to get_line().

buffer(self) → byte_span, integer

Returns the buffer + the offset where the read data begins.

 The returned buffer’s capacity may be greater than its length.

stream.scanner | 273

set_buffer(self, buf: byte_span[, offset: integer = 1])

Set buf as the new internal buffer.

buf's capacity will indicate the usable part of the buffer for IO ops and buf's length (after slicing
from offset) will indicate the buffered data.

 Previously buffered record and self.record_terminator are discarded.

Example

local buffered_data = buf:slice(offset)
scanner:set_buffer(buf, offset)

stream.scanner | 274

system.arguments

Synopsis

local system = require "system"
system.arguments: string[]

Description
Arguments passed on the CLI (a.k.a. ARGV). First element in the table is emilua binary path. Second
element is the script path. Rest of the elements are anything passed after "--" in the command line.

system.arguments | 275

system.environment

Synopsis

local system = require "system"
system.environment: { [string]: string }

Description
The environment variables.

system.environment | 276

system.in_

Synopsis

local system = require "system"
system.in_

Functions

read_some(self, buffer: byte_span) → integer

Read data from stdin and blocks current fiber until it completes or errs.

Returns the number of bytes read.

First argument is ignored and it’s only there to make it have a stream-like
interface.

dup(self) → file_descriptor

Creates a new file descriptor that refers to STDIN_FILENO.

isatty(self) → boolean

See isatty(3).

tcgetpgrp(self) → integer

See tcgetpgrp(3).

tcsetpgrp(self, pgid_id: integer)

See tcsetpgrp(3).

system.in_ | 277

system.out

Synopsis

local system = require "system"
system.out

Functions

write_some(self, buffer: byte_span) → integer

Write data to stdout and blocks current fiber until it completes or errs.

Returns the number of bytes written.

First argument is ignored and it’s only there to make it have a stream-like
interface.

dup(self) → file_descriptor

Creates a new file descriptor that refers to STDOUT_FILENO.

isatty(self) → boolean

See isatty(3).

tcgetpgrp(self) → integer

See tcgetpgrp(3).

tcsetpgrp(self, pgid_id: integer)

See tcsetpgrp(3).

system.out | 278

system.err

Synopsis

local system = require "system"
system.err

Functions

write_some(self, buffer: byte_span) → integer

Write data to stderr and blocks current fiber until it completes or errs.

Returns the number of bytes written.

First argument is ignored and it’s only there to make it have a stream-like
interface.

dup(self) → file_descriptor

Creates a new file descriptor that refers to STDERR_FILENO.

isatty(self) → boolean

See isatty(3).

tcgetpgrp(self) → integer

See tcgetpgrp(3).

tcsetpgrp(self, pgid_id: integer)

See tcsetpgrp(3).

system.err | 279

system.exit

Synopsis

local system = require "system"
system.exit([code: integer = 0 [, opts: table]])

Description
Exit the VM. Other VMs in the process are not stopped.

Parameters

code

If caller is the main VM, code is used as the application exit code.

opts

If caller is the main VM, then opts is a table that accepts the following options:

force: 0|1|2|"abort" = 0

0

Nothing.

1

Not implemented yet.

2

Exit the process forcefully (little to none cleanup steps are performed).

"abort"

Exit the process even more forcefully (equivalent to the C function abort()).

system.exit | 280

system.signal

Synopsis

local system = require "system"
system.signal: table

Constants
• SIGABRT.

• SIGFPE.

• SIGILL.

• SIGINT.

• SIGSEGV.

• SIGTERM.

UNIX constants

 Availability depending on the host system.

• SIGALRM.

• SIGBUS.

• SIGCHLD.

• SIGCONT.

• SIGHUP.

• SIGIO.

• SIGKILL.

• SIGPIPE.

• SIGPROF.

• SIGQUIT.

• SIGSTOP.

• SIGSYS.

• SIGTRAP.

• SIGTSTP.

• SIGTTIN.

• SIGTTOU.

system.signal | 281

• SIGURG.

• SIGUSR1.

• SIGUSR2.

• SIGVTALRM.

• SIGWINCH.

• SIGXCPU.

• SIGXFSZ.

Windows constants

 Availability depending on the host system.

• SIGBREAK.

Signal handling also works on Windows, as the Microsoft Visual C++ runtime
library maps console events like Ctrl+C to the equivalent signal.

system.signal | 282

system.signal.raise

Synopsis

local system = require "system"
system.signal.raise(signal: integer)

Description
Sends a signal to the calling process.

system.signal.raise | 283

system.signal.set

local set = system.signal.set.new(system.signal.SIGTERM, system.signal.SIGINT)
set:wait()

This class provides the ability to wait for one or more signals to occur.

Multiple registration of signals

As in Boost.Asio (translated to fibers/emilua lingo):

The same signal number may be registered with different [set]
objects. When the signal occurs, one [signal notification is
queued] for each [set] object.

Functions

new([sig1: integer, …]) → system.signal.set

Constructor.

Arguments are treated as signals to be added to the set.

Only the main VM on the process may create new set objects. If the VM elects
another VM to be the new main VM, its old set objects will remain valid and
working, but the VM won’t be able to create new set objects.

add(self, signal: integer)

Add a signal to the set.

 Only the master VM is allowed to use this function.

remove(self, signal: integer)

Remove a signal from the set.

clear(self)

Remove all signals from the set.

cancel(self)

Cancel all operations associated with the set.

system.signal.set | 284

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/signal_set.html#boost_asio.reference.signal_set.multiple_registration_of_signals

wait(self) → integer

Wait for a signal to be delivered. The function will return when:

• One of the registered signals in the set occurs; or

• The set was cancelled, in which case the function will raise the exception
boost::asio::error::operation_aborted.

A number is returned to indicate which signal occurred.

Queueing of signal notifications

As in Boost.Asio (translated to fibers/emilua lingo):

If a signal is registered with a [set], and the signal occurs
when there are no [calls to wait()], then the signal notification
is queued. The next [call to wait() on that set] will dequeue
the notification. If multiple notifications are queued,
subsequent [wait() calls] dequeue them one at a time. Signal
notifications are dequeued in order of ascending signal
number.

If a signal number is removed from a [set] (using the [remove()
member function]) then any queued notifications for that
signal are discarded.

system.signal.set | 285

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/signal_set.html#boost_asio.reference.signal_set.queueing_of_signal_notifications

system.signal.ignore

Synopsis

local system = require "system"
system.signal.ignore(signal: integer)

Description
Ignore signal.

This function will fail if you try to ignore a signal for which a system.signal.set
object exists.

 Only the master VM is allowed to use this function.

 This function is only available to POSIX systems.

system.signal.ignore | 286

system.signal.default

Synopsis

local system = require "system"
system.signal.default(signal: integer)

Description
Reset signal's handling to the system’s default.

There’s no need to set the default handlers at the start of the program. The Emilua
runtime will already do that for you.

This function will fail if you try to reset a signal for which a system.signal.set
object exists.

 Only the master VM is allowed to use this function.

 This function is only available to POSIX systems.

system.signal.default | 287

system.spawn

Synopsis

local system = require "system"
system.spawn(opts: table) -> subprocess

Description
Creates a new process.

Named parameters

program: string|filesystem.path|file_descriptor

string

A simple filename. The system searches for this file in the list of directories specified by PATH
(in the same way as for execvp(3)).

filesystem.path

The path (which can be absolute or relative) of the executable.

file_descriptor

A file descriptor to the executable. See fexecve(3).

arguments: string[]|nil

A table of strings that will be used as the created process' argv. On nil, an empty argv will be
used.

 Don’t forget to include the name of the program as the first argument.

environment: { [string]: string }|nil

A table of strings that will be used as the created process' envp. On nil, an empty envp will be
used.

stdin,stdout,stderr: "share"|file_descriptor|nil

"share"

The spawned process will share the specified standard handle (stdin, stdout, or stderr) with
the caller process.

file_descriptor

Use the file descriptor as the specified standard handle (stdin, stdout, or stderr) for the
spawned process.

system.spawn | 288

nil

Create and use a closed pipe end as the specified standard handle (stdin, stdout, or stderr) for
the spawned process.

On Windows, it’s unspecified (will vary depending on whether any
redirection is done at all, dwCreationFlags's value, etc).

extra_fds: { [integer]: file_descriptor }|nil

Extra file descriptors for the child to inherit. Parent and child processes don’t need to share the
same numeric value reference for a given file description. The file descriptor number used in
the child process will be the one specified in the key portion of the dictionary argument. Only
file descriptors numbered from 3 to 9 are acceptable (i.e. the same limitations of low fds that
you’re likely to face on older UNIX shells). If you need to pass more than 10 file
descriptors — stdin, stdout, stderr, plus these extra 7 file descriptors — use another interface (e.g.
SCM_RIGHTS).

 Not available on Windows.

signal_on_gcreaper: integer = system.signal.SIGTERM

Each process is responsible for reaping its own children. A process that fails to reap its children
will soon exhaust its OS-provided resources. For short-lived programs that’s hardly a problem
given the process quits and its children are re-parented to the next subreaper in the chain
(usually the init process). However for a concurrency runtime such as Emilua we expect other
concurrent tasks to remain unaffected by the one failing task (be it a single fiber or the whole
VM). Emilua will then transparently reap any child process for which its handle has been GC’ed.
signal_on_gcreaper allows the user to specify a signal to be sent to the child that’s about to be
reaped at this occasion.

By default, the signal system.signal.SIGTERM will be sent to the child and then the main Emilua
process will — indefinitely, non-blockingly, and non-pollingly — await for all of its children to
finish even if there’s no longer any Lua program being executed. Use the more dangerous
system.signal.SIGKILL if you don’t want the main Emilua process to wait long for the child. Use 0
if you don’t want the Emilua reaper to send any signal before awaiting for the child.

Ideally the system kernel would expose some re-parent syscall, but until then (if
ever), signal_on_gcreaper will be necessary.

 Only available on Linux.

pd_daemon: boolean = see-below

Instead of the default terminate-on-close behaviour, allow the process to live until it is explicitly
killed with kill(2).

By default, it’s true unless the parent process is in capability mode (see cap_enter(2)).

 Only available on FreeBSD.

system.spawn | 289

scheduler.policy: string|nil

Values acceptable on Linux for non-real-time policies are:

"other"

See SCHED_OTHER.

"batch"

See SCHED_BATCH.

"idle"

See SCHED_IDLE.

Values acceptable on Linux for real-time policies are:

"fifo"

See SCHED_FIFO. Must also set scheduler.priority.

"rr"

See SCHED_RR. Must also set scheduler.priority.

 Not available on Windows.

scheduler.priority: integer|nil

The interpretation of this parameter is dependant on scheduler.policy.

 Not available on Windows.

scheduler.reset_on_fork: boolean = false

If true, grandchildren created as a result of a call to fork(2) from the direct child will not inherit
privileged scheduling policies. If set, must also set scheduler.policy.

 Not available on Windows.

start_new_session: boolean = false

Whether to create a new session and become the session leader. On true, calls setsid() on the
child.

On Windows, DETACHED_PROCESS|CREATE_NEW_PROCESS_GROUP is used in creation
flags.

set_ctty: file_descriptor|nil

Set the controlling terminal for the child. It is an error to specify set_ctty, but omit
start_new_session.

 It’s an error to specify both set_ctty and foreground.

system.spawn | 290

 Not available on Windows.

process_group: integer|nil

Set the process group (it calls setpgid() on the child). On 0, the child’s process group ID is made
the same as its process ID.

On Windows, only 0 is supported (CREATE_NEW_PROCESS_GROUP is used in creation
flags).

foreground: "stdin"|"stdout"|"stderr"|file_descriptor|nil

Make the child be the foreground job for the specified controlling terminal by calling
tcsetpgrp() (SIGTTOU will be blocked for the duration of the call). It is an error to specify
foreground, but omit process_group.

"stdin", "stdout", and "stderr" can only be specified if parent and child share
the same file for the specified standard handle.

 It’s an error to specify both foreground and set_ctty.

 Not available on Windows.

ruid: integer|nil

Set the real user ID.

 Not available on Windows.

euid: integer|nil

Set the effective user ID. If the set-user-ID permission bit is enabled on the executable file, its
effect will override this setting (see execve(2)).

 Not available on Windows.

rgid: integer|nil

Set the real group ID.

 Not available on Windows.

egid: integer|nil

Set the effective group ID. If the set-group-ID permission bit is enabled on the executable file, its
effect will override this setting (see execve(2)).

 Not available on Windows.

extra_groups: integer[]|nil

Set the supplementary group IDs.

system.spawn | 291

 Not available on Windows.

set_no_new_privs: boolean = false

Set the no_new_privs attribute.

 Not available on Windows.

seccomp_set_mode_filter: byte_span|nil

Set the secure computing (seccomp) mode to limit the available system calls.

 Only available on Linux.

landlock_restrict_self: file_descriptor|nil

Enforce a Landlock ruleset.

 Only available on Linux.

umask: integer|nil

See umask(3p).

 Not available on Windows.

working_directory: filesystem.path|file_descriptor|nil

Sets the working directory for the spawned program.

pdeathsig: integer|nil

Signal that the process will get when its parent dies. If the executable file contains set-user-ID,
set-group-ID, or contains associated capabilities, pdeathsig will be cleared.

“Parent” is a difficult term to define here. For Linux, that’s not the process, but
the thread. For Emilua, the thread will exist for at least as long as the calling
Lua VM exists (even if the Lua VM might jump between threads). The thread
will also exist for even longer, for as long as other Lua VMs are using it.

 Not available on Windows.

setns_user: file_descriptor|nil

Enter in this Linux user namespace. When setns_user is specified, Emilua always enter in the
user namespace before any other namespace.

 Only available on Linux.

setns_mount: file_descriptor|nil

Enter in this Linux mount namespace.

system.spawn | 292

 Only available on Linux.

setns_uts: file_descriptor|nil

Enter in this Linux UTS namespace.

 Only available on Linux.

setns_ipc: file_descriptor|nil

Enter in this Linux IPC namespace.

 Only available on Linux.

setns_net: file_descriptor|nil

Enter in this Linux net namespace.

 Only available on Linux.

show_window:
"hide"|"shownormal"|"normal"|"showminimized"|"showmaximized"|"maximize"|"shownoactivate"|"show"
|"minimize"|"showminnoactive"|"showna"|"restore"|"forceminimize"|nil

If present, STARTUPINFO.dwFlags will include STARTF_USESHOWWINDOW, and STARTUPINFO.wShowWindow
will be initialized with the indicated value.

 Only available on Windows.

create_breakaway_from_job: boolean = false

 Only available on Windows.

create_new_console: boolean = false

 Only available on Windows.

create_no_window: boolean = false

 Only available on Windows.

detached_process: boolean = false

 Only available on Windows.

subprocess functions

wait(self)

Wait for the process to finish, and then reap it. Information regarding termination status is stored
in exit_code and exit_signal.

system.spawn | 293

If your code fails to call wait(), the Emilua runtime will reap the process in your
stead as soon as the GC collects self and the underlying subprocess finishes. It’s
important to reap children processes to free OS-associated resources.

kill(self, signal: integer)

Send a signal to the process.

You may specify 0 (the null signal) to not send any signal, but still let the OS to
perform permission checks (reported as raised errors).

cap_get(self) → system.linux_capabilities

See cap_get_pid(3).

subprocess properties

exit_code: integer

The process return code as passed to exit(3). If the process was terminated by a signal, this will be
128 + exit_signal (as done in BASH).

 You can only access this field for wait()'ed processes.

exit_signal: integer|nil

The signal that terminated the process. If the process was not terminated by a signal, this will be
nil.

 You can only access this field for wait()'ed processes.

pid: integer|nil

The process id used by the OS to represent this child process (e.g. the number that shows up in
/proc on some UNIX systems).

For wait()'ed processes, value is nil.

Bugs
Windows properly supports line-breaks in arguments. However if you’re running a .bat or a .cmd
file, there’s a bug in CMD.exe that stops parsing the command line at the line-break. This is a bug in
Windows. To fix this bug, you need to install TCC-RT from JP Software (or another CMD.exe
replacement such as wineconsole) and set COMSPEC to this new interpreter. Microsoft won’t fix this
bug.

system.spawn | 294

system.getresuid

Synopsis

local system = require "system"
system.getresuid() -> integer, integer, integer

Description
Returns the real UID, the effective UID, and the saved set-user-ID of the calling process, respectively.

system.getresuid | 295

system.getresgid

Synopsis

local system = require "system"
system.getresgid() -> integer, integer, integer

Description
Returns the real GID, the effective GID, and the saved set-group-ID of the calling process,
respectively.

system.getresgid | 296

system.setresuid

Synopsis

local system = require "system"
system.setresuid(ruid: integer, euid: integer, suid: integer)

Description
Sets the real UID, the effective UID, and the saved set-user-ID of the calling process.

If one of the arguments equals -1, the corresponding value is not changed.

 Only the master VM is allowed to use this function.

system.setresuid | 297

system.setresgid

Synopsis

local system = require "system"
system.setresgid(rgid: integer, egid: integer, sgid: integer)

Description
Sets the real GID, the effective GID, and the saved set-group-ID of the calling process.

If one of the arguments equals -1, the corresponding value is not changed.

 Only the master VM is allowed to use this function.

system.setresgid | 298

system.getgroups

Synopsis

local system = require "system"
system.getgroups() -> integer[]

Description
Returns the current supplementary group IDs of the calling process. It is unspecified whether
getgroups() also returns the effective group ID in the list.

system.getgroups | 299

system.setgroups

Synopsis

local system = require "system"
system.setgroups(groups: integer[])

Description
Sets the supplementary group IDs for the calling process.

 Only the master VM is allowed to use this function.

system.setgroups | 300

system.set_no_new_privs

Synopsis

local system = require "system"
system.set_no_new_privs()

Description
Set the no_new_privs attribute for the calling process (i.e. threads are synchronized even on Linux).

 Only the master VM is allowed to use this function.

Bugs
There’s a libpsx bug that prevents thread synchronization to work: https://bugzilla.kernel.org/
show_bug.cgi?id=218607.

You may use system.seccomp_set_mode_filter() afterwards to synchronize the
no_new_privs bit in all threads.

system.set_no_new_privs | 301

https://bugzilla.kernel.org/show_bug.cgi?id=218607
https://bugzilla.kernel.org/show_bug.cgi?id=218607

system.linux_capabilities

local system = require "system"
local caps = system.cap_init()
caps:set_proc()
system.cap_reset_ambient()

Functions

cap_get_proc() → linux_capabilities

See cap_get_proc(3).

cap_init() → linux_capabilities

See cap_init(3).

cap_from_text(caps: string) → linux_capabilities

See cap_from_text(3).

cap_get_bound(cap: string) → boolean

See cap_get_bound(3).

cap_drop_bound(cap: string)

See cap_drop_bound(3).

 Only the master VM is allowed to use this function.

cap_get_ambient(cap: string) → boolean

See cap_get_ambient(3).

cap_set_ambient(cap: string, value: boolean)

See cap_set_ambient(3).

 Only the master VM is allowed to use this function.

cap_reset_ambient()

See cap_reset_ambient(3).

 Only the master VM is allowed to use this function.

system.linux_capabilities | 302

cap_get_secbits() → integer

See cap_get_secbits(3).

cap_set_secbits(bits: integer)

See cap_set_secbits(3).

The securebits flag constants are available from the system table:

• SECBIT_NOROOT

• SECBIT_NOROOT_LOCKED

• SECBIT_NO_SETUID_FIXUP

• SECBIT_NO_SETUID_FIXUP_LOCKED

• SECBIT_KEEP_CAPS

• SECBIT_KEEP_CAPS_LOCKED

• SECBIT_NO_CAP_AMBIENT_RAISE

• SECBIT_NO_CAP_AMBIENT_RAISE_LOCKED

 Only the master VM is allowed to use this function.

dup(self) → linux_capabilities

See cap_dup(3).

clear(self)

See cap_clear(3).

clear_flag(self, flag: string)

See cap_clear_flag(3).

get_flag(self, cap: string, flag: string) → boolean

See cap_get_flag(3).

set_flag(self, flag: string, caps: string[], value: boolean)

See cap_set_flag(3).

fill_flag(self, to: string, ref: linux_capabilities, from: string)

See cap_fill_flag(3).

fill(self, to: string, from: string)

See cap_fill(3).

system.linux_capabilities | 303

set_proc(self)

See cap_set_proc(3).

 Only the master VM is allowed to use this function.

get_nsowner(self) → integer

See cap_get_nsowner(3).

set_nsowner(self, rootuid: integer)

See cap_set_nsowner(3).

Metamethods

__tostring()

See cap_to_text(3).

Bugs
There’s a libpsx bug that prevents thread synchronization to work: https://bugzilla.kernel.org/
show_bug.cgi?id=218607. This affects:

• set_proc()

• cap_drop_bound()

• cap_set_ambient()

• cap_reset_ambient()

• cap_set_secbits()

system.linux_capabilities | 304

https://bugzilla.kernel.org/show_bug.cgi?id=218607
https://bugzilla.kernel.org/show_bug.cgi?id=218607

system.seccomp_set_mode_filter

Synopsis

local system = require "system"
system.seccomp_set_mode_filter(bpf_fprogram: byte_span)

Description
Set the secure computing (seccomp) mode for the calling process (i.e. SECCOMP_FILTER_FLAG_TSYNC is
always used), to limit the available system calls.

 Only the master VM is allowed to use this function.

system.seccomp_set_mode_filter | 305

system.landlock_create_ruleset

Synopsis

local system = require "system"
system.landlock_create_ruleset(attr: table|nil, flags: table|nil) -> file_descriptor
|integer

Description
Creates a new file descriptor identifying a ruleset.

 Only available on Linux.

Parameters
• attr.handled_access_fs: string[]

◦ "execute"

◦ "write_file"

◦ "read_file"

◦ "read_dir"

◦ "remove_dir"

◦ "remove_file"

◦ "make_char"

◦ "make_dir"

◦ "make_reg"

◦ "make_sock"

◦ "make_fifo"

◦ "make_block"

◦ "make_sym"

◦ "refer"

◦ "truncate"

• flags: string[]

◦ "version"

system.landlock_create_ruleset | 306

system.landlock_add_rule

Synopsis

local system = require "system"
system.landlock_add_rule(ruleset_fd: file_descriptor, rule_type: "path_beneath", attr:
table)

Description
Adds a new Landlock rule to an existing ruleset.

 Only available on Linux.

Parameters
• attr.allowed_access: string[]

◦ "execute"

◦ "write_file"

◦ "read_file"

◦ "read_dir"

◦ "remove_dir"

◦ "remove_file"

◦ "make_char"

◦ "make_dir"

◦ "make_reg"

◦ "make_sock"

◦ "make_fifo"

◦ "make_block"

◦ "make_sym"

◦ "refer"

◦ "truncate"

• attr.parent_fd: integer

system.landlock_add_rule | 307

system.landlock_restrict_self

Synopsis

local system = require "system"
system.landlock_restrict_self(ruleset_fd: file_descriptor)

Description
Enforce a Landlock ruleset for the calling process.

 Only the master VM is allowed to use this function.

 Only available on Linux.

Bugs
There’s a libpsx bug that prevents thread synchronization to work: https://bugzilla.kernel.org/
show_bug.cgi?id=218607.

system.landlock_restrict_self | 308

https://bugzilla.kernel.org/show_bug.cgi?id=218607
https://bugzilla.kernel.org/show_bug.cgi?id=218607

system.getpid

Synopsis

local system = require "system"
system.getpid() -> integer

Description
Returns the process ID of the calling process.

system.getpid | 309

system.getppid

Synopsis

local system = require "system"
system.getppid() -> integer

Description
Returns the parent process ID of the calling process.

system.getppid | 310

system.kill

Synopsis

local system = require "system"
system.kill(pid: integer, sig: integer)

Description
See kill(2).

 Only the master VM is allowed to use this function.

system.kill | 311

system.getpgrp

Synopsis

local system = require "system"
system.getpgrp() -> integer

Description
See getpgrp(3).

system.getpgrp | 312

system.getpgid

Synopsis

local system = require "system"
system.getpgid(pid: integer) -> integer

Description
See getpgid(3).

system.getpgid | 313

system.setpgid

Synopsis

local system = require "system"
system.setpgid(pid: integer, pgid: integer)

Description
See setpgid(3).

 Only the master VM is allowed to use this function.

system.setpgid | 314

system.getsid

Synopsis

local system = require "system"
system.getsid(pid: integer) -> integer

Description
See getsid(3).

system.getsid | 315

system.setsid

Synopsis

local system = require "system"
system.setsid() -> integer

Description
See setsid(3).

 Only the master VM is allowed to use this function.

system.setsid | 316

system.jail_set

Synopsis

local system = require "system"
system.jail_set(params: { [string]: string|boolean }, flags: string[]|nil) -> integer

Description
Create or modify a jail.

Jail parameters are given as strings and they’ll be transparently converted to the native format
accepted by the kernel.

flags may contain the following values:

• "create"

• "update"

• "dying"

See jail(8) for more information on the core jail parameters.

system.jail_set | 317

system.jail_get

Synopsis

local system = require "system"
system.jail_get(params: table, flags: string[]|nil) -> integer, { [string]: string }

Description
Retrieves jail parameters.

params specify — as a list of strings — which parameters are desired in the returned value.

params also specify — in the same format as used by system.jail_set() — which jail to read values
from. Usually "jid" or "name" are used as filters. The special parameter "lastjid" can be used to
retrieve a list of all jails.

flags may contain the following values:

• "dying"

Example
Retrieve the hostname and path of jail "foo":

local jid, params = system.jail_get {
 "host.hostname",
 "path",
 ["name"] = "foo"
}

print(jid)
print(params["host.hostname"])
print(params.path)

system.jail_get | 318

system.jail_remove

Synopsis

local system = require "system"
system.jail_remove(jid: integer)

Description
Removes the jail identified by jid.

system.jail_remove | 319

system.jailparam_all

Synopsis

local system = require "system"
system.jailparam_all() -> string[]

Description
Returns a list of all known jail parameters.

system.jailparam_all | 320

tls.context

Functions

new(method: string) → tls.context

Constructor.

method must be one of:

• "sslv2"

• "sslv2_client"

• "sslv2_server"

• "sslv3"

• "sslv3_client"

• "sslv3_server"

• "tlsv1"

• "tlsv1_client"

• "tlsv1_server"

• "sslv23"

• "sslv23_client"

• "sslv23_server"

• "tlsv11"

• "tlsv11_client"

• "tlsv11_server"

• "tlsv12"

• "tlsv12_client"

• "tlsv12_server"

• "tlsv13"

• "tlsv13_client"

• "tlsv13_server"

• "tls"

• "tls_client"

• "tls_server"

add_certificate_authority(self, data: byte_span)

Add certification authority for performing verification.

tls.context | 321

add_verify_path(self, path: filesystem.path)

Add a directory containing certificate authority files to be used for performing verification.

clear_options(self, flags: string[])

Clear options on the context.

load_verify_file(self, filename: filesystem.path)

Load a certification authority file for performing verification.

set_default_verify_paths(self)

Configures the context to use the default directories for finding certification authority certificates.

set_options(self, flags: string[])

Set options on the context.

set_password_callback(self, callback: function)

Set the password callback.

callback's signature must be:

function callback(max_length: integer, purpose: string) -> string

purpose will be either "for_reading" or "for_writing".

The function callback will be called from an unspecified fiber where IO/blocking
operations are disabled.

set_verify_callback(self, callback: string[, callback_options…])

Set the callback used to verify peer certificates.

For now only one callback is supported:

"host_name_verification"

callback_options will be a single string containing the host name.

set_verify_depth(self, depth: integer)

Set the peer verification depth.

set_verify_mode(self, mode: string)

Set the peer verification mode.

mode might be one of the following:

tls.context | 322

• "none".

• "peer".

• "fail_if_no_peer_cert".

• "client_once".

use_certificate(self, data: byte_span, fmt: string)

Use a certificate from a memory buffer.

fmt might be one of the following:

"asn1"

ASN.1 file.

"pem"

PEM file.

use_certificate_chain(self, data: byte_span)

Use a certificate chain from a memory buffer.

use_certificate_chain_file(self, filename: filesystem.path)

Use a certificate chain from a file.

use_certificate_file(self, filename: filesystem.path, fmt: string)

Use a certificate from a file.

fmt might be one of the following:

"asn1"

ASN.1 file.

"pem"

PEM file.

use_private_key(self, data: byte_span, fmt: string)

Use a private key from a memory buffer.

fmt might be one of the following:

"asn1"

ASN.1 file.

"pem"

PEM file.

tls.context | 323

use_private_key_file(self, filename: filesystem.path, fmt: string)

Use a private key from a file.

fmt might be one of the following:

"asn1"

ASN.1 file.

"pem"

PEM file.

use_rsa_private_key(self, data: byte_span, fmt: string)

Use an RSA private key from a memory buffer.

fmt might be one of the following:

"asn1"

ASN.1 file.

"pem"

PEM file.

use_rsa_private_key_file(self, filename: filesystem.path, fmt: string)

Use an RSA private key from a file.

fmt might be one of the following:

"asn1"

ASN.1 file.

"pem"

PEM file.

use_tmp_dh(self, data: byte_span)

Use the specified memory buffer to obtain the temporary Diffie-Hellman parameters.

use_tmp_dh_file(self, filename: filesystem.path)

Use the specified file to obtain the temporary Diffie-Hellman parameters.

Function flags

default_workarounds

The flag with same name in Boost.Asio:

tls.context | 324

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/default_workarounds.html

Implement various bug workarounds.

no_compression

The flag with same name in Boost.Asio:

Disable compression. Compression is disabled by default.

no_sslv2

The flag with same name in Boost.Asio:

Disable SSL v2.

no_sslv3

The flag with same name in Boost.Asio:

Disable SSL v3.

no_tlsv1

The flag with same name in Boost.Asio:

Disable TLS v1.

no_tlsv1_1

The flag with same name in Boost.Asio:

Disable TLS v1.1.

no_tlsv1_2

The flag with same name in Boost.Asio:

Disable TLS v1.2.

no_tlsv1_3

The flag with same name in Boost.Asio:

Disable TLS v1.3.

single_dh_use

The flag with same name in Boost.Asio:

tls.context | 325

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_compression.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_sslv2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_sslv3.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_tlsv1.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_tlsv1_1.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_tlsv1_2.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/no_tlsv1_3.html
https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/ssl__context_base/single_dh_use.html

Always create a new key when using tmp_dh parameters.

tls.context | 326

tls.socket

tls_ctx = tls.context.new('tlsv13')

local s = ip.tcp.socket.new()
ip.connect(s, ip.tcp.get_address_info('www.example.com', 'https'))
s = tls.socket.new(s, tls_ctx)
s:client_handshake()
s = http.socket.new(s)

local req = http.request.new()
local res = http.response.new()
req.headers.host = 'www.example.com'

s:write_request(req)
s:read_response(res)

Functions

new(sock: ip.tcp.socket, tls_ctx: tls.context) → tls.socket

Constructor.

client_handshake(self)

Perform the TLS client handshake and suspend current fiber until operation finishes.

server_handshake(self)

Perform the TLS server handshake and suspend current fiber until operation finishes.

read_some(self, buffer: byte_span) → integer

Read data from the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes read.

write_some(self, buffer: byte_span) → integer

Write data to the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

set_server_name(self, hostname: string)

Sets the server name indication.

tls.socket | 327

set_verify_callback(self, callback: string[, callback_options…])

Set the callback used to verify peer certificates.

For now only one callback is supported:

"host_name_verification"

callback_options will be a single string containing the host name.

set_verify_depth(self, depth: integer)

Set the peer verification depth.

set_verify_mode(self, mode: string)

Set the peer verification mode.

mode might be one of the following:

• "none".

• "peer".

• "fail_if_no_peer_cert".

• "client_once".

tls.socket | 328

unix.dial

Synopsis

local unix = require "unix"
local fs = require "filesystem"

unix.stream.dial()
unix.seqpacket.dial()
unix.datagram.dial()

function(ep: string) -> socket

Description
1. Creates a socket.

2. Connects the created socket to ep.

3. Returns the connected socket.

 If ep starts with @ then it’s assumed to represent an abstract UNIX socket.

Current fiber is suspended until operation finishes.

unix.dial | 329

unix.listen

Synopsis

local unix = require "unix"

unix.stream.listen()
unix.seqpacket.listen()

function(ep: string[, mode: integer]) -> acceptor

Description
1. Creates a socket.

2. Set common options.

3. If mode is given, changes the process file mode creation mask (umask) such that the next call to
bind() will create an UNIX socket whose permissions will be bit.band(mode,
filesystem.mode(7,7,7)). Old umask is saved.

4. Binds the socket to ep. On errors, old umask (if umask was modified on the previous step) is
restored before the error is propagated up.

5. If mode is given, restores the old umask now.

6. Put the socket in the listening state.

7. Returns the socket.

 If ep starts with @ then it’s assumed to represent an abstract UNIX socket.

 If mode is given, only the master VM is allowed to use this function.

Rationale

mode as an extra parameter

To understand why mode is not part of the address string, we must understand why port is part of
the address string in ip.tcp.listen(). ip.tcp.listen() accepts the port number as part of the
address string because this info is usually stored in config files where there’s a single string to
identify the endpoint to bind to. Having this logic embedded in ip.tcp.listen() makes it easier to
parse these config files.

However the permission access mode is not part of the endpoint address. mode is not an address. It
doesn’t identify an endpoint. It’s a separate value in the config file (possibly fully omitted from the
config altogether and hardcoded in the program logic). It’s not even required in many situations
(hence why it’s an optional parameter here).

unix.listen | 330

mode is only usable in the master VM

It’d be possible to make this function fallback to change the permissions of the socket afterwards
when it’s not called from the master VM. However this approach would not be atomic and would be
unsafe as an unwanted client could connect in the window of time where the file held the wrong
permissions.

During code refactors, the call to this function could be moved to the wrong VM and the dangerous
approach would be chosen w/o the user’s knowledge. This property is undesired and that’s a strong
reason why we don’t do it.

If the lack of atomicity is not a problem, the user can explicitly call filesystem.chmod() after
listen() returns.

(Not) Removing files by default

This function could simplify the user’s life even further if it also removed the file pointed to by ep
before it binds the socket. However it’d make the function unusable in scenarios where the file
must be removed by a different process (e.g. a supervised daemon, or many processes contending
over the address with custom fallback code).

In other words, the presence/possibility of EADDRINUSE may be a desired property in this algorithm
by some programs.

This function is a high-level API and it’s not intended to replace every usage of the lower-level API
so the previous point may not be that strong of a reason. However an explicit call to
filesystem.remove() in user’s code is not that big of a deal. It doesn’t add that much boilerplate.

unix.listen | 331

unix.datagram.socket

local sock = unix.datagram.socket.new()
sock.open()
sock.bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))

local buf = byte_span.new(1024)
local nread = sock:receive(buf)
print(buf:slice(1, nread))

Functions

new() → unix.datagram.socket

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into an unix.datagram.socket object.

pair() → unix.datagram.socket, unix.datagram.socket

Create a pair of connected sockets.

open(self)

Open the socket.

bind(self, pathname: filesystem.path)

Bind the socket to the given local endpoint.

connect(self, pathname: filesystem.path)

Set the default destination address so datagrams can be sent using send() without specifying a
destination address.

disconnect(self)

Dissolve the socket’s association by resetting the socket’s peer address (i.e. connect(3) will be called
with an AF_UNSPEC address).

close(self)

Close the socket.

Forward the call to the function with same name in Boost.Asio:

unix.datagram.socket | 332

https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_datagram_socket/close/overload2.html

Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the
boost::asio::error::operation_aborted error.

shutdown(self, what: string)

Disable sends or receives on the socket.

what can be one of the following:

"receive"

Shutdown the receive side of the socket.

"send"

Shutdown the send side of the socket.

"both"

Shutdown both send and receive on the socket.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native socket to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.
Ownership of the native socket is then transferred to the caller.

receive(self, buffer: byte_span[, flags: string[]]) → integer

Receive a datagram and blocks current fiber until it completes or errs.

unix.datagram.socket | 333

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_datagram_socket/cancel/overload2.html
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_datagram_socket/release/overload2.html

Returns the number of bytes read.

receive_from(self, buffer: byte_span[, flags: string[]]) → integer,
filesystem.path

Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the pathname of the remote sender of the datagram.

send(self, buffer: byte_span[, flags: string[]]) → integer

Send data on the datagram socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

The send operation can only be used with a connected socket. Use the send_to
function to send data on an unconnected datagram socket.

send_to(self, buffer: byte_span, pathname: filesystem.path[, flags:
string[]]) → integer

Send a datagram to the specified remote endpoint and blocks current fiber until it completes or
errs.

Returns the number of bytes written.

receive_with_fds(self, buffer: byte_span, maxfds: integer) → integer,
file_descriptor[]

Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the table containing the fds read.

receive_from_with_fds(self, buffer: byte_span, maxfds: integer) → integer,
filesystem.path, file_descriptor[]

Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read plus the pathname of the remote sender of the datagram plus the
table containing the fds read.

send_with_fds(self, buffer: byte_span, fds: file_descriptor[]) → integer

Send data on the datagram socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

The send operation can only be used with a connected socket. Use the send_to
function to send data on an unconnected datagram socket.

unix.datagram.socket | 334

send_to_with_fds(self, buffer: byte_span, pathname: filesystem.path, fds:
file_descriptor[]) → integer

Send a datagram to the specified remote endpoint and blocks current fiber until it completes or
errs.

Returns the number of bytes written.

set_option(self, opt: string, val)

Set an option on the socket.

Currently available options are:

"debug"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the socket.

Currently available options are:

"debug"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

io_control(self, command: string[, …])

Perform an IO control command on the socket.

Currently available commands are:

"bytes_readable"

Expects no arguments. Get the amount of data that can be read without blocking. Implements
the FIONREAD IO control command.

unix.datagram.socket | 335

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html

Function flags

peek

The flag with same name in Boost.Asio:

Peek at incoming data without removing it from the input queue.

Properties

is_open: boolean

Whether the socket is open.

local_path: filesystem.path

The local address endpoint of the socket.

remote_path: filesystem.path

The remote address endpoint of the socket.

unix.datagram.socket | 336

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_peek.html

unix.stream.acceptor

local a = unix.stream.acceptor.new()
a:open()
a:bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))
a:listen()

while true do
 local s = a:accept()
 spawn(function()
 my_client_handler(s)
 end)
end

Functions

new() → unix.stream.acceptor

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into an unix.stream.acceptor object.

open(self)

Open the acceptor.

set_option(self, opt: string, val)

Set an option on the acceptor.

Currently available options are:

"enable_connection_aborted"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the acceptor.

Currently available options are:

unix.stream.acceptor | 337

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/enable_connection_aborted.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html

"enable_connection_aborted"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

bind(self, pathname: filesystem.path)

Bind the acceptor to the given local endpoint.

listen(self [, backlog: integer])

Place the acceptor into the state where it will listen for new connections.

backlog is the maximum length of the queue of pending connections. If not provided, an
implementation defined maximum length will be used.

accept(self) → unix.stream.socket

Initiate an accept operation and blocks current fiber until it completes or errs.

close(self)

Close the acceptor.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be
used to again perform socket accept operations.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native acceptor to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

unix.stream.acceptor | 338

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/enable_connection_aborted.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_socket_acceptor/close/overload2.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_socket_acceptor/cancel/overload2.html

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous accept operations to
finish immediately, and the handlers for cancelled operations will be passed
the boost::asio::error::operation_aborted error. Ownership of the native
acceptor is then transferred to the caller.

Properties

is_open: boolean

Whether the acceptor is open.

local_path: filesystem.path

The local address of the acceptor.

unix.stream.acceptor | 339

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_socket_acceptor/release/overload2.html

unix.stream.socket

local a, b = unix.stream.socket.pair()

spawn(function()
 local buf = byte_span.new(1024)
 local nread = b:read_some(buf)
 print(buf:slice(1, nread))
end):detach()

local nwritten = stream.write_all(a, 'Hello World')
print(nwritten)

Functions

new() → unix.stream.socket

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into an unix.stream.socket object.

pair() → unix.stream.socket, unix.stream.socket

Create a pair of connected sockets.

open(self)

Open the socket.

bind(self, pathname: filesystem.path)

Bind the socket to the given local endpoint.

close(self)

Close the socket.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the
boost::asio::error::operation_aborted error.

unix.stream.socket | 340

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_socket/close/overload2.html

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native socket to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.
Ownership of the native socket is then transferred to the caller.

io_control(self, command: string[, …])

Perform an IO control command on the socket.

Currently available commands are:

"bytes_readable"

Expects no arguments. Get the amount of data that can be read without blocking. Implements
the FIONREAD IO control command.

shutdown(self, what: string)

Disable sends or receives on the socket.

what can be one of the following:

"receive"

Shutdown the receive side of the socket.

"send"

Shutdown the send side of the socket.

"both"

Shutdown both send and receive on the socket.

unix.stream.socket | 341

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/basic_stream_socket/cancel/overload2.html
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_stream_socket/release/overload2.html

connect(self, pathname: filesystem.path)

Initiate a connect operation and blocks current fiber until it completes or errs.

disconnect(self)

Dissolve the socket’s association by resetting the socket’s peer address (i.e. connect(3) will be called
with an AF_UNSPEC address).

read_some(self, buffer: byte_span) → integer

Read data from the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes read.

write_some(self, buffer: byte_span) → integer

Write data to the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

receive_with_fds(self, buffer: byte_span, maxfds: integer) → integer,
file_descriptor[]

Read data from the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes read + the table containing the fds read.

send_with_fds(self, buffer: byte_span, fds: file_descriptor[]) → integer

Write data to the stream socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

fds are not closed and can be re-converted to some Emilua IO object if so one
wishes.

set_option(self, opt: string, val)

Set an option on the socket.

Currently available options are:

"send_low_watermark"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_low_watermark"

Check Boost.Asio documentation.

unix.stream.socket | 342

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_low_watermark.html

"receive_buffer_size"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the socket.

Currently available options are:

"send_low_watermark"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_low_watermark"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

"remote_credentials": { uid: integer, groups: integer[], pid: integer }

Returns the credentials from the remote process.

 On Linux, groups don’t include the supplementary group list.

 pid is racy and you shouldn’t use it for anything but debugging purposes.

"remote_security_labels": { [string]: string }|string|nil

(FreeBSD only) Returns the security labels associated with each policy for the remote process.

Optionally one may pass an extra argument to get_option() with either a list of strings for the
policies of interest, or just a single string in case there’s only one policy of interest.

"remote_security_label": string

(Linux only) Returns the SELinux security label associated with the remote process.

Properties

is_open: boolean

Whether the socket is open.

unix.stream.socket | 343

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_low_watermark.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html

local_path: filesystem.path

The local address of the socket.

remote_path: filesystem.path

The remote address of the socket.

unix.stream.socket | 344

unix.seqpacket.acceptor

local a = unix.seqpacket.acceptor.new()
a:open()
a:bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))
a:listen()

while true do
 local s = a:accept()
 spawn(function()
 my_client_handler(s)
 end)
end

Functions

new() → unix.seqpacket.acceptor

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into an unix.seqpacket.acceptor object.

open(self)

Open the acceptor.

set_option(self, opt: string, val)

Set an option on the acceptor.

Currently available options are:

"enable_connection_aborted"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the acceptor.

Currently available options are:

unix.seqpacket.acceptor | 345

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/enable_connection_aborted.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html

"enable_connection_aborted"

Check Boost.Asio documentation.

"debug"

Check Boost.Asio documentation.

bind(self, pathname: filesystem.path)

Bind the acceptor to the given local endpoint.

listen(self [, backlog: integer])

Place the acceptor into the state where it will listen for new connections.

backlog is the maximum length of the queue of pending connections. If not provided, an
implementation defined maximum length will be used.

accept(self) → unix.seqpacket.socket

Initiate an accept operation and blocks current fiber until it completes or errs.

close(self)

Close the acceptor.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be
used to again perform socket accept operations.

cancel(self)

Cancel all asynchronous operations associated with the acceptor.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native acceptor to self.

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

unix.seqpacket.acceptor | 346

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/enable_connection_aborted.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_socket_acceptor/close/overload2.html
https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/reference/basic_socket_acceptor/cancel/overload2.html

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous accept operations to
finish immediately, and the handlers for cancelled operations will be passed
the boost::asio::error::operation_aborted error. Ownership of the native
acceptor is then transferred to the caller.

Properties

is_open: boolean

Whether the acceptor is open.

local_path: filesystem.path

The local address of the acceptor.

unix.seqpacket.acceptor | 347

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_socket_acceptor/release/overload2.html

unix.seqpacket.socket

local sock = unix.seqpacket.socket.new()
sock.open()
sock.bind(filesystem.path.new('/tmp/9Lq7BNBnBycd6nxy.socket'))

local buf = byte_span.new(1024)
local nread = sock:receive(buf)
print(buf:slice(1, nread))

A note on 0-sized packets
AF_UNIX+SOCK_SEQPACKET sockets behave just the same on Linux and BSD systems. It’s safe to use
them as IPC primitives in your system. However there are a few caveats related to the idea of what
SOCK_SEQPACKET were supposed to mean originally.

seems SEQPACKET is too exotic thing that everyone implements it in own
manner, because i’ve tested SCTP seqpacket implementation, and found […]

— Arseny Krasnov, https://lore.kernel.org/netdev/8bd80d3f-3e00-5e31-42a1-300ff29100ae@kaspersky.com/

The API for general SOCK_SEQPACKET sockets exposes a few incompatible mechanisms to tell EOF
apart from 0-sized messages. These mechanisms are not found in AF_UNIX sockets.

As for AF_UNIX+SOCK_SEQPACKET, 0-sized payloads are valid and indistinguishable from the end of the
stream.

According to POSIX the behaviour for Linux and BSD is wrong, but pointing to POSIX or changing
the behaviour of current systems is useless (even harmful) at this point.

Emilua will just report EOF whenever a 0-sized read occurs.

If you control both sides of the communication channel, just avoid sending any 0-sized datagram
and you’re safe.

If you don’t control the sending side, you might receive 0-sized datagrams that are in reality an
attack to the system. If your program is the only receiver there’s hardly any harm. However if you
need to make sure the connection is closed when your program deems it as so, just call
shutdown("receive") or shutdown("both") to make sure the connection is closed to every associated
handle.

However don’t let this small note scare you. AF_UNIX+SOCK_SEQPACKET sockets are a powerful IPC
primitive that will save you from way worse concerns if your application needs a socket that is
connection-oriented, preserves message boundaries, and delivers messages in the order that they
were sent. SOCK_STREAM and SOCK_DGRAM will have their own caveats.

unix.seqpacket.socket | 348

https://lore.kernel.org/netdev/8bd80d3f-3e00-5e31-42a1-300ff29100ae@kaspersky.com/
mailto:8bd80d3f-3e00-5e31-42a1-300ff29100ae@kaspersky.com
https://lore.kernel.org/netdev/8bd80d3f-3e00-5e31-42a1-300ff29100ae@kaspersky.com/
https://stackoverflow.com/questions/18217299/detecting-connection-close-on-af-unix-sock-seqpacket-socket-without-using-poll
https://stackoverflow.com/questions/18217299/detecting-connection-close-on-af-unix-sock-seqpacket-socket-without-using-poll
https://stackoverflow.com/questions/3595684/why-do-i-not-see-msg-eor-for-sock-seqpacket-on-linux/6088616#6088616

Functions

new() → unix.seqpacket.socket

new() ①
new(fd: file_descriptor) ②

① Default constructor.

② Converts a file descriptor into an unix.seqpacket.socket object.

pair() → unix.seqpacket.socket, unix.seqpacket.socket

Create a pair of connected sockets.

open(self)

Open the socket.

bind(self, pathname: filesystem.path)

Bind the socket to the given local endpoint.

close(self)

Close the socket.

Forward the call to the function with same name in Boost.Asio:

Any asynchronous send, receive or connect operations will be cancelled
immediately, and will complete with the
boost::asio::error::operation_aborted error.

cancel(self)

Cancel all asynchronous operations associated with the socket.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

assign(self, fd: file_descriptor)

Assign an existing native socket to self.

unix.seqpacket.socket | 349

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_seq_packet_socket/close/overload2.html
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_seq_packet_socket/cancel/overload2.html

release(self) → file_descriptor

Release ownership of the native descriptor implementation.

Forward the call to the function with same name in Boost.Asio:

This function causes all outstanding asynchronous connect, send and
receive operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.
Ownership of the native socket is then transferred to the caller.

shutdown(self, what: string)

Disable sends or receives on the socket.

what can be one of the following:

"receive"

Shutdown the receive side of the socket.

"send"

Shutdown the send side of the socket.

"both"

Shutdown both send and receive on the socket.

connect(self, pathname: filesystem.path)

Initiate a connect operation and blocks current fiber until it completes or errs.

disconnect(self)

Dissolve the socket’s association by resetting the socket’s peer address (i.e. connect(3) will be called
with an AF_UNSPEC address).

receive(self, buffer: byte_span[, flags: string[]]) → integer

Receive a datagram and blocks current fiber until it completes or errs.

Returns the number of bytes read.

send(self, buffer: byte_span[, flags: string[]]) → integer

Send data on the seqpacket socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

receive_with_fds(self, buffer: byte_span, maxfds: integer) → integer,
file_descriptor[]

Receive a datagram and blocks current fiber until it completes or errs.

unix.seqpacket.socket | 350

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio/reference/basic_seq_packet_socket/release/overload2.html

Returns the number of bytes read plus the table containing the fds read.

send_with_fds(self, buffer: byte_span, fds: file_descriptor[]) → integer

Send data on the seqpacket socket and blocks current fiber until it completes or errs.

Returns the number of bytes written.

set_option(self, opt: string, val)

Set an option on the socket.

Currently available options are:

"debug"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

get_option(self, opt: string) → value

Get an option from the socket.

Currently available options are:

"debug"

Check Boost.Asio documentation.

"send_buffer_size"

Check Boost.Asio documentation.

"receive_buffer_size"

Check Boost.Asio documentation.

"remote_credentials": { uid: integer, groups: integer[], pid: integer }

Returns the credentials from the remote process.

 On Linux, groups don’t include the supplementary group list.

 pid is racy and you shouldn’t use it for anything but debugging purposes.

"remote_security_labels": { [string]: string }|string|nil

(FreeBSD only) Returns the security labels associated with each policy for the remote process.

Optionally one may pass an extra argument to get_option() with either a list of strings for the
policies of interest, or just a single string in case there’s only one policy of interest.

unix.seqpacket.socket | 351

https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/debug.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/send_buffer_size.html
https://www.boost.org/doc/libs/1_72_0/doc/html/boost_asio/reference/socket_base/receive_buffer_size.html

"remote_security_label": string

(Linux only) Returns the SELinux security label associated with the remote process.

io_control(self, command: string[, …])

Perform an IO control command on the socket.

Currently available commands are:

"bytes_readable"

Expects no arguments. Get the amount of data that can be read without blocking. Implements
the FIONREAD IO control command.

Function flags

peek

The flag with same name in Boost.Asio:

Peek at incoming data without removing it from the input queue.

Properties

is_open: boolean

Whether the socket is open.

local_path: filesystem.path

The local address endpoint of the socket.

remote_path: filesystem.path

The remote address endpoint of the socket.

unix.seqpacket.socket | 352

https://www.boost.org/doc/libs/1_78_0/doc/html/boost_asio/reference/socket_base/message_peek.html

file_descriptor
A file descriptor.

 It cannot be created directly.

 On Windows, file_descriptor is only implemented for pipes and file.stream.

Functions

close(self)

Closes the file descriptor w/o waiting for the GC.

dup(self) → file_descriptor

Creates a new file descriptor that refers to the same open file description.

cap_get(self) → system.linux_capabilities

See cap_get_fd(3).

cap_set(self, caps: system.linux_capabilities)

See cap_set_fd(3).

cap_rights_limit(self, rights: string[])

See cap_rights_limit(2).

Parameters:

• rights: string[]

◦ "accept"

◦ "acl_check"

◦ "acl_delete"

◦ "acl_get"

◦ "acl_set"

◦ "bind"

◦ "bindat"

◦ "chflagsat"

◦ "connect"

◦ "connectat"

◦ "create"

file_descriptor | 353

◦ "event"

◦ "extattr_delete"

◦ "extattr_get"

◦ "extattr_list"

◦ "extattr_set"

◦ "fchdir"

◦ "fchflags"

◦ "fchmod"

◦ "fchmodat"

◦ "fchown"

◦ "fchownat"

◦ "fcntl"

◦ "fexecve"

◦ "flock"

◦ "fpathconf"

◦ "fsck"

◦ "fstat"

◦ "fstatat"

◦ "fstatfs"

◦ "fsync"

◦ "ftruncate"

◦ "futimes"

◦ "futimesat"

◦ "getpeername"

◦ "getsockname"

◦ "getsockopt"

◦ "ioctl"

◦ "kqueue"

◦ "kqueue_change"

◦ "kqueue_event"

◦ "linkat_source"

◦ "linkat_target"

◦ "listen"

◦ "lookup"

◦ "mac_get"

file_descriptor | 354

◦ "mac_set"

◦ "mkdirat"

◦ "mkfifoat"

◦ "mknodat"

◦ "mmap"

◦ "mmap_r"

◦ "mmap_rw"

◦ "mmap_rwx"

◦ "mmap_rx"

◦ "mmap_w"

◦ "mmap_wx"

◦ "mmap_x"

◦ "pdgetpid"

◦ "pdkill"

◦ "peeloff"

◦ "pread"

◦ "pwrite"

◦ "read"

◦ "recv"

◦ "renameat_source"

◦ "renameat_target"

◦ "seek"

◦ "sem_getvalue"

◦ "sem_post"

◦ "sem_wait"

◦ "send"

◦ "setsockopt"

◦ "shutdown"

◦ "symlinkat"

◦ "ttyhook"

◦ "unlinkat"

◦ "write"

cap_ioctls_limit(self, cmds: integer[])

See cap_ioctls_limit(2).

file_descriptor | 355

cap_fcntls_limit(self, fcntlrights: string[])

See cap_fcntls_limit(2).

Parameters:

• fcntlrights: string[]

◦ "getfl"

◦ "setfl"

◦ "getown"

◦ "setown"

Metamethods

__tostring()

Produces a string in the format "/dev/fd/%i" where "%i" is the integer value as seen by the OS.

file_descriptor | 356

	Emilua 0.9 reference documentation
	Preface
	Emilua
	Fibers
	Sandboxes
	Container runtime
	Cross-platform
	Network IO
	IPC
	Filesystem API
	Misc features

	Conventions
	Type annotations

	ChangeLog
	0.9 - 2024-06-26
	0.8 - 2024-05-19
	0.7 - 2024-04-17
	0.6 - 2024-01-06
	0.5 - 2023-12-03
	0.4 - 2023-04-03
	0.3 - 2021-03-04
	0.2 - 2021-01-31

	Tutorials
	Getting started
	Hello World
	Async IO
	Concurrent IO
	Hello sleepsort
	Cancellable operations
	Final notes

	Working with streams
	Short reads and short writes
	Layering
	Composed operations
	Why EOF is an error
	See also

	Filesystem API
	The object filesystem.path
	Filesystem operations
	Async IO and threading

	Alternative projects
	OpenResty

	Internals
	Multiple lua VMs
	Inside a single lua VM
	Userdata practices
	C++ async operations
	this_fiber
	Asynchronous event notification
	LUA_ERRMEM
	Channels and resources
	The exception mechanism
	User-coroutines
	Dead fibers
	Functions that receive a lua callback
	Process environment
	VM settings inheritance
	Lua 5.2/LuaJIT extensions
	2GB addressing limit
	JIT parameters
	Locales
	Open questions
	Extra caution to take when writing plug-ins
	Final note

	Internals (sandboxes)
	Message serialization
	Spawning a new process
	Work lifetime management
	Flow control
	setns(fd, CLONE_NEWPID)
	Tests

	Interruption API
	The lua exception model
	The interruption protocol
	Handling interruption requests
	The scope() facility
	IO objects
	User-level coroutines
	Recap

	Lua 5.1
	Enabled modules

	Modules
	Quick-start
	Big modules
	External packages
	Misc

	Errors
	The error category
	The error table
	RDF error categories

	Sandboxes
	The API
	The init.script

	Linux namespaces
	The user namespace
	The network namespace
	The PID namespace
	The mount namespace
	Full example

	C++ embedder API
	emilua::app_context
	Builtin modules
	Master VM
	Cleanup at exit
	Actors spawned in different processes
	RT signals

	Reference
	generic_error
	Error list

	asio_error
	Error list

	format
	Synopsis
	Description
	Example

	byte_span
	Functions
	Functions (string algorithms)
	Functions (primitive types serialization)
	Properties
	Metamethods

	condition_variable
	Functions
	Notifying without a lock

	filesystem.path
	Functions
	Properties
	Metamethods
	Module attributes

	filesystem.mode
	Synopsis
	Description

	filesystem.directory_entry
	Functions
	Properties

	filesystem.directory_iterator
	Synopsis
	Description
	opts

	filesystem.recursive_directory_iterator
	Synopsis
	Description
	opts
	Wrapping the iterator to skip over CVS files.
	handle functions
	handle properties
	Example

	filesystem.absolute
	Synopsis
	Description

	filesystem.canonical
	Synopsis
	Description

	filesystem.weakly_canonical
	Synopsis
	Description

	filesystem.relative
	Synopsis
	Description

	filesystem.proximate
	Synopsis
	Description

	filesystem.current_working_directory
	Synopsis
	Description

	filesystem.chroot
	Synopsis
	Description

	filesystem.copy
	Synopsis
	Description
	opts

	filesystem.copy_file
	Synopsis
	Description
	on_existing

	filesystem.copy_symlink
	Synopsis
	Description

	filesystem.create_directory
	Synopsis
	Description
	See also

	filesystem.mkdir
	Synopsis
	Description
	See also

	filesystem.create_hardlink
	Synopsis
	Description

	filesystem.create_symlink
	Synopsis
	Description

	filesystem.mkfifo
	Synopsis
	Description

	filesystem.mknod
	Synopsis
	Description

	filesystem.makedev
	Synopsis
	Description

	filesystem.equivalent
	Synopsis
	Description

	filesystem.file_size
	Synopsis
	Description

	filesystem.hardlink_count
	Synopsis
	Description

	filesystem.clock
	Functions
	time_point functions
	time_point properties
	time_point metamethods

	filesystem.last_write_time
	Synopsis
	Description

	filesystem.chown
	Synopsis
	Description

	filesystem.chmod
	Synopsis
	Description

	filesystem.read_symlink
	Synopsis
	Description

	filesystem.remove
	Synopsis
	Description

	filesystem.rename
	Synopsis
	Description

	filesystem.resize_file
	Synopsis
	Description

	filesystem.is_empty
	Synopsis
	Description

	filesystem.exists
	Synopsis
	Description

	filesystem.is_block_device
	Synopsis
	Description

	filesystem.is_character_device
	Synopsis
	Description

	filesystem.is_directory
	Synopsis
	Description

	filesystem.is_fifo
	Synopsis
	Description

	filesystem.is_other
	Synopsis
	Description

	filesystem.is_regular_file
	Synopsis
	Description

	filesystem.is_socket
	Synopsis
	Description

	filesystem.is_symlink
	Synopsis
	Description

	filesystem.space
	Synopsis
	Description

	filesystem.status
	Synopsis
	Description

	filesystem.temp_directory_path
	Synopsis
	Description

	filesystem.umask
	Synopsis
	Description

	filesystem.cap_get_file
	Synopsis
	Description

	filesystem.cap_set_file
	Synopsis
	Description

	file.random_access
	Functions
	Properties

	file.stream
	Functions
	Properties

	file.read_all_at
	Synopsis
	Description

	file.read_at_least_at
	Synopsis
	Description

	file.write_all_at
	Synopsis
	Description

	file.write_at_least_at
	Synopsis
	Description

	ip.address
	Functions
	Functions (v4)
	Functions (v6)
	Properties
	Properties (v6)
	Metamethods

	ip.get_address_info
	Synopsis
	Description
	Flags

	ip.get_name_info
	Synopsis
	Description

	ip.connect
	Synopsis
	Description
	Parameters
	Example

	ip.dial
	Synopsis
	Description

	ip.host_name
	Synopsis
	Description

	ip.tostring
	Synopsis
	Description

	ip.toendpoint
	Synopsis
	Description

	ip.tcp.listen
	Synopsis
	Description

	ip.tcp.acceptor
	Functions
	Properties

	ip.tcp.socket
	Functions
	Function flags
	Properties

	ip.udp.socket
	Functions
	Function flags
	Properties

	json
	Types
	Constants
	Functions
	Customization point metamethods
	Conversion table
	Rationale

	json.writer
	Functions
	Attributes

	mutex
	Functions

	recursive_mutex
	Functions

	future
	Functions
	future functions
	promise functions

	pipe.read_stream
	Functions
	Properties

	pipe.write_stream
	Functions
	Properties

	pipe.pair
	Synopsis
	Description

	regex
	Types
	Functions

	serial_port
	Functions
	Properties

	time.sleep
	Synopsis
	Description

	time.steady_clock
	Functions
	time_point functions
	time_point properties
	time_point metamethods

	time.steady_timer
	Functions
	Properties

	time.system_clock
	Functions
	time_point functions
	time_point properties
	time_point metamethods

	time.system_timer
	Functions
	Properties

	time.high_resolution_clock
	Functions
	Attributes
	time_point properties
	time_point metamethods

	spawn
	Synopsis
	Description
	fiber functions
	fiber properties

	this_fiber
	Functions
	Properties

	inbox
	Synopsis
	Description
	Methods

	spawn_vm
	Synopsis
	Description
	channel functions
	channel properties

	init.script
	Synopsis
	Description
	arg: integer|nil
	errexit: boolean = true
	The controlling terminal
	Helpers
	Functions
	Constants
	C.mount_setattr(dirfd: integer, pathname: string|nil, flags: integer, attr: { attr_set: integer, attr_clr: integer, propagation: integer, userns_fd: integer })
	C.seccomp_set_mode_filter(bpf_fprogram: string) → integer, integer
	C.landlock_create_ruleset(attr: table|nil, flags: table|nil) → integer, integer
	C.landlock_add_rule(ruleset_fd: integer, rule_type: "path_beneath", attr: table) → integer, integer
	C.landlock_restrict_self(ruleset_fd: integer) → integer, integer
	C.jail_set(params: { [string]: string|boolean }, flags: string[]|nil) → integer, integer
	See also

	spawn_context_threads
	Synopsis
	Description

	stream.write_all
	Synopsis
	Description

	stream.write_at_least
	Synopsis
	Description

	stream.read_all
	Synopsis
	Description

	stream.read_at_least
	Synopsis
	Description

	stream.scanner
	Line-based protocols
	Combining strategies
	Functions

	system.arguments
	Synopsis
	Description

	system.environment
	Synopsis
	Description

	system.in_
	Synopsis
	Functions

	system.out
	Synopsis
	Functions

	system.err
	Synopsis
	Functions

	system.exit
	Synopsis
	Description
	Parameters

	system.signal
	Synopsis
	Constants
	UNIX constants
	Windows constants

	system.signal.raise
	Synopsis
	Description

	system.signal.set
	Functions

	system.signal.ignore
	Synopsis
	Description

	system.signal.default
	Synopsis
	Description

	system.spawn
	Synopsis
	Description
	subprocess functions
	subprocess properties
	Bugs

	system.getresuid
	Synopsis
	Description

	system.getresgid
	Synopsis
	Description

	system.setresuid
	Synopsis
	Description

	system.setresgid
	Synopsis
	Description

	system.getgroups
	Synopsis
	Description

	system.setgroups
	Synopsis
	Description

	system.set_no_new_privs
	Synopsis
	Description
	Bugs

	system.linux_capabilities
	Functions
	Metamethods
	Bugs

	system.seccomp_set_mode_filter
	Synopsis
	Description

	system.landlock_create_ruleset
	Synopsis
	Description
	Parameters

	system.landlock_add_rule
	Synopsis
	Description
	Parameters

	system.landlock_restrict_self
	Synopsis
	Description
	Bugs

	system.getpid
	Synopsis
	Description

	system.getppid
	Synopsis
	Description

	system.kill
	Synopsis
	Description

	system.getpgrp
	Synopsis
	Description

	system.getpgid
	Synopsis
	Description

	system.setpgid
	Synopsis
	Description

	system.getsid
	Synopsis
	Description

	system.setsid
	Synopsis
	Description

	system.jail_set
	Synopsis
	Description

	system.jail_get
	Synopsis
	Description
	Example

	system.jail_remove
	Synopsis
	Description

	system.jailparam_all
	Synopsis
	Description

	tls.context
	Functions
	Function flags

	tls.socket
	Functions

	unix.dial
	Synopsis
	Description

	unix.listen
	Synopsis
	Description
	Rationale

	unix.datagram.socket
	Functions
	Function flags
	Properties

	unix.stream.acceptor
	Functions
	Properties

	unix.stream.socket
	Functions
	Properties

	unix.seqpacket.acceptor
	Functions
	Properties

	unix.seqpacket.socket
	A note on 0-sized packets
	Functions
	Function flags
	Properties

	file_descriptor
	Functions
	Metamethods

